Ensemble-Learning Framework for Intrusion Detection to Enhance Internet of Things' Devices Security

被引:29
|
作者
Alotaibi, Yazeed [1 ]
Ilyas, Mohammad [1 ]
机构
[1] Florida Atlantic Univ, Dept Elect Engn & Comp Sci, 777 Glades Rd, Boca Raton, FL 33431 USA
关键词
ensemble learning; machine learning; internet of things; security; intrusion detection system; TON-IOT;
D O I
10.3390/s23125568
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The Internet of Things (IoT) comprises a network of interconnected nodes constantly communicating, exchanging, and transferring data over various network protocols. Studies have shown that these protocols pose a severe threat (Cyber-attacks) to the security of data transmitted due to their ease of exploitation. In this research, we aim to contribute to the literature by improving the Intrusion Detection System (IDS) detection efficiency. In order to improve the efficiency of the IDS, a binary classification of normal and abnormal IoT traffic is constructed to enhance the IDS performance. Our method employs various supervised ML algorithms and ensemble classifiers. The proposed model was trained on TON-IoT network traffic datasets. Four of the trained ML-supervised models have achieved the highest accurate outcomes; Random Forest, Decision Tree, Logistic Regression, and K-Nearest Neighbor. These four classifiers are fed to two ensemble approaches: voting and stacking. The ensemble approaches were evaluated using the evaluation metrics and compared for their efficacy on this classification problem. The accuracy of the ensemble classifiers was higher than that of the individual models. This improvement can be attributed to ensemble learning strategies that leverage diverse learning mechanisms with varying capabilities. By combining these strategies, we were able to enhance the reliability of our predictions while reducing the occurrence of classification errors. The experimental results show that the framework can improve the efficiency of the Intrusion Detection System, achieving an accuracy rate of 0.9863.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] An Efficient Intrusion Detection Framework for Industrial Internet of Things Security
    Alshathri S.
    El-Sayed A.
    El-Shafai W.
    El-Din Hemdan E.
    Computer Systems Science and Engineering, 2023, 46 (01): : 819 - 834
  • [2] Machine learning based intrusion detection framework for detecting security attacks in internet of things
    Kantharaju, V.
    Suresh, H.
    Niranjanamurthy, M.
    Ansarullah, Syed Immamul
    Amin, Farhan
    Alabrah, Amerah
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Ensemble Learning Approach for Intrusion Detection Systems in Industrial Internet of Things
    Nuaimi, Mudhafar
    Fourati, Lamia Chaari
    Ben Hamed, Bassem
    2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
  • [4] Collaborative Ensemble-Learning based Intrusion Detection Systems for Clouds
    Mehetrey, Poonam
    Shahriari, Behrooz
    Moh, Melody
    2016 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS (CTS), 2016, : 404 - 411
  • [5] An Intrusion Detection and Identification System for Internet of Things Networks Using a Hybrid Ensemble Deep Learning Framework
    Kongsorot, Yanika
    Musikawan, Pakarat
    Aimtongkham, Phet
    You, Ilsun
    Benslimane, Abderrahim
    So-In, Chakchai
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 596 - 613
  • [6] Ensemble-learning Approaches for Network Security and Anomaly Detection
    Vanerio, Juan
    Casas, Pedro
    BIG-DAMA '17: PROCEEDINGS OF THE 2017 WORKSHOP ON BIG DATA ANALYTICS AND MACHINE LEARNING FOR DATA COMMUNICATION NETWORKS, 2017, : 1 - 6
  • [7] Internet of Things (IoTs) Security: Intrusion Detection using Deep Learning
    Sahingoz, Ozgur Koray
    Cekmez, Ugur
    Buldu, Ali
    JOURNAL OF WEB ENGINEERING, 2021, 20 (06): : 1721 - 1760
  • [8] Machine Learning Enabled Intrusion Detection for Edge Devices in the Internet of Things
    Alsharif, Maram
    Rawat, Danda B.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 361 - 367
  • [9] An Explainable Ensemble Deep Learning Approach for Intrusion Detection in Industrial Internet of Things
    Shtayat, Mousa'B Mohammad
    Hasan, Mohammad Kamrul
    Sulaiman, Rossilawati
    Islam, Shayla
    Khan, Atta Ur Rehman
    IEEE ACCESS, 2023, 11 : 115047 - 115061
  • [10] A Hybrid Ensemble Learning-based Intrusion Detection System for the Internet of Things
    Alani, Mohammed M.
    Awad, Ali Ismail
    Barkat, Ezedin
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 1 - 8