Electrolyte circulation effects in electrochemical performance for different flow fields of all-vanadium redox flow battery

被引:0
|
作者
Kumar, Sanjay [1 ,2 ]
Jayanti, Sreenivas [3 ]
Singh, Arvind [4 ]
机构
[1] BIT Sindri, Dept Chem Engn, Dhanbad, Bihar, India
[2] Marwadi Univ, Dept Chem Engn, Fac Technol, Rajkot, Gujarat, India
[3] IIT Madras, Dept Chem Engn, Chennai, Tamil Nadu, India
[4] Rajiv Gandhi Inst Petr Technol, Dept Chem Engn & Biochem Engn, Jais, Amethi, India
关键词
electrolyte circulation; energy efficiency; flow field; polarization curve; redox flow battery; 1 KW CLASS; ENERGY-STORAGE; PRESSURE-DROP; COMPRESSION; COST;
D O I
10.1002/est2.336
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A comparative study of electrochemical performance and hydrodynamic effects on a single cell for all vanadium redox flow batteries has been investigated in the present study. Electrochemical performance of a cell has been conducted with an active area of 414 cm(2) fitted with serpentine, interdigitated, and enhanced cross-flow split serpentine (ECFSS) flow fields. The effects of electrolyte circulation rates on the electrochemical performance have been investigated for each flow field, and stable energy efficiency was achieved in 20 charge/discharge cycles for all three flow fields. Higher coulombic, voltage, and energy efficiencies in the serpentine flow field were achieved to be 96%, 82%, and 79%, respectively. The maximum peak power density values for the serpentine, ECFSS, and interdigitated flow field were found to be 158.2, 152.5, and 136.8 mW center dot cm(-2), respectively, at a flow rate of 345 mL center dot min(-1). Furthermore, detailed flow analysis was simulated by using computational fluid dynamics, and these studies postulated the reasons for the higher performance of the serpentine flow field compared to other flow fields.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Attributes and performance analysis of all-vanadium redox flow battery based on a novel flow field design
    Zebo Huang
    Chao Yang
    Xing Xie
    Bin Yang
    Yangsheng Liu
    Zhenwei Guo
    Ionics, 2023, 29 : 2793 - 2803
  • [32] Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery
    Hsieh, Chin-Lung
    Tsai, Po-Hong
    Hsu, Ning-Yih
    Chen, Yong-Song
    ENERGIES, 2019, 12 (02)
  • [33] Mitigation of water and electrolyte imbalance in all-vanadium redox flow batteries
    Shin, Jeongmin
    Jeong, Byeongseon
    Chinannai, Muhammad Faizan
    Ju, Hyunchul
    Electrochimica Acta, 2021, 390
  • [34] Urushi/Nafion Hybrid Membranes for an All-Vanadium Redox Flow Battery
    Jung, Jiyoon
    Cho, Eun Hae
    Hwang, Seung Sang
    Won, Jongok
    CHEMISTRYSELECT, 2018, 3 (21): : 5769 - 5777
  • [35] Bismuth concentration influenced competition between electrochemical reactions in the all-vanadium redox flow battery
    Wen, Yue
    Neville, Tobias P.
    Sobrido, Ana Jorge
    Shearing, Paul R.
    Brett, Dan J. L.
    Jervis, Rhodri
    JOURNAL OF POWER SOURCES, 2023, 566
  • [36] Mitigation of water and electrolyte imbalance in all-vanadium redox flow batteries
    Shin, Jeongmin
    Jeong, Byeongseon
    Chinannai, Muhammad Faizan
    Ju, Hyunchul
    ELECTROCHIMICA ACTA, 2021, 390
  • [37] Development of ion exchange membrane for all-vanadium redox flow battery
    School of Chemistry and Materials Science, University of Science and Technology of China, Hefei
    Anhui
    230026, China
    Huagong Xuebao, 9 (3296-3304):
  • [38] Verified reduction of dimensionality for an all-vanadium redox flow battery model
    Sharma, A. K.
    Ling, C. Y.
    Birgersson, E.
    Vynnycky, M.
    Han, M.
    JOURNAL OF POWER SOURCES, 2015, 279 : 345 - 350
  • [39] Model of charge/discharge operation for all-vanadium redox flow battery
    Li, Minghua
    Fan, Yongsheng
    Wang, Baoguo
    Huagong Xuebao/CIESC Journal, 2014, 65 (01): : 313 - 318
  • [40] Thermal modeling and temperature control of an all-vanadium redox flow battery
    Shen, HaiFeng
    Zhu, XinJian
    Cao, Hongfei
    Xue, Binqiang
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 432 - 437