Information Transfer in Semi-Supervised Semantic Segmentation

被引:6
|
作者
Wu, Jiawei [1 ,2 ]
Fan, Haoyi [3 ]
Li, Zuoyong [2 ]
Liu, Guang-Hai [4 ]
Lin, Shouying [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mech & Elect Engn, Fuzhou 350121, Peoples R China
[2] Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R China
[3] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China
[4] Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guilin 541004, Peoples R China
关键词
Semantic segmentation; Training; Task analysis; Semantics; Bars; Semisupervised learning; Entropy; Semi-supervised learning; semantic segmentation; semi-supervised semantic segmentation; information transfer; NETWORK;
D O I
10.1109/TCSVT.2023.3292285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Enhancing the accuracy of dense classification with limited labeled data and abundant unlabeled data, known as semi-supervised semantic segmentation, is an essential task in vision comprehension. Due to the lack of annotation in unlabeled data, additional pseudo-supervised signals, typically pseudo-labeling, are required to improve the performance. Although effective, these methods fail to consider the internal representation of neural networks and the inherent class-imbalance in dense samples. In this work, we propose an information transfer theory, which establishes a theoretical relationship between shallow and deep representations. We further apply this theory at both the semantic and pixel levels, referred to as IIT-SP, to align different types of information. The proposed IIT-SP optimizes shallow representations to match the target representation required for segmentation. This limits the upper bound of deep representations to enhance segmentation performance. We also propose a momentum-based Cluster-State bar that updates class status online, along with a HardClassMix augmentation and a loss weighting technique to address class imbalance issues based on it. The effectiveness of the proposed method is demonstrated through comparative experiments on PASCAL VOC and Cityscapes benchmarks, where the proposed IIT-SP achieves state-of-the-art performance, reaching mIoU of 68.34% with only 2% labeled data on PASCAL VOC and mIoU of 64.20% with only 12.5% labeled data on Cityscapes.
引用
收藏
页码:1174 / 1185
页数:12
相关论文
共 50 条
  • [21] Fuzzy Positive Learning for Semi-supervised Semantic Segmentation
    Qiao, Pengchong
    Wei, Zhidan
    Wang, Yu
    Wang, Zhennan
    Song, Guoli
    Xu, Fan
    Ji, Xiangyang
    Liu, Chang
    Chen, Jie
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15465 - 15474
  • [22] Colour Augmentation for Improved Semi-supervised Semantic Segmentation
    French, Geoff
    Mackiewicz, Michal
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 356 - 363
  • [23] Boosting Semi-Supervised Semantic Segmentation with Probabilistic Representations
    Xie, Haoyu
    Wang, Changqi
    Zheng, Mingkai
    Dong, Minjing
    You, Shan
    Fu, Chong
    Xu, Chang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 3, 2023, : 2938 - 2946
  • [24] Catastrophic Forgetting Problem in Semi-Supervised Semantic Segmentation
    Zhou, Yan
    Jiao, Ruyi
    Wang, Dongli
    Mu, Jinzhen
    Li, Jianxun
    IEEE ACCESS, 2022, 10 (48855-48864) : 48855 - 48864
  • [25] Semi-supervised Semantic Segmentation with Mutual Knowledge Distillation
    Yuan, Jianlong
    Ge, Jinchao
    Wang, Zhibin
    Liu, Yifan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5436 - 5444
  • [26] Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
    Na, Jaemin
    Ha, Jung-Woo
    Chang, Hyung Jin
    Han, Dongyoon
    Hwang, Wonjun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Unbiased Subclass Regularization for Semi-Supervised Semantic Segmentation
    Guan, Dayan
    Huang, Jiaxing
    Xiao, Aoran
    Lu, Shijian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9958 - 9968
  • [28] Semi-supervised semantic segmentation with cross teacher training
    Xiao, Hui
    Li, Dong
    Xu, Hao
    Fu, Shuibo
    Yan, Diqun
    Song, Kangkang
    Peng, Chengbin
    NEUROCOMPUTING, 2022, 508 : 36 - 46
  • [29] A Pseudo Variance Algorithm for Semi-Supervised Semantic Segmentation
    Li, Bin
    Ye, Mengting
    Jiang, Xiangyuan
    Ma, Xiaojing
    Sun, Wenxu
    Chen, Jiyang
    Ma, Sile
    IEEE ACCESS, 2025, 13 : 34149 - 34159
  • [30] Semi-supervised Learning Methods for Semantic Segmentation of Polyps
    Ines, Adrian
    Dominguez, Cesar
    Heras, Jonathan
    Mata, Eloy
    Pascual, Vico
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 162 - 172