A NEW q-ANALOGUE OF THE BINOMIAL IDENTITY Σk(-1)k( n+3k2n ) = 2 <middle dot> 3n-1

被引:0
|
作者
Li, Yan-ni [1 ]
Zhao, Yuan-yuan [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
关键词
q-binomial coefficient; q-binomial theorem; involution;
D O I
10.22108/toc.2023.135277.2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a new q-analogue of the binomial identity: Sigma(k)(-1)(k) ( 2n n+ 3k) ={ 1,ifn= 0, 2<middle dot>3(n-1),if n >= 1.. Our proof relies on a weight-preserving and sign-reversing involution due to Guo and Zhang.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [21] 多元样条空间3(△_n)(k≥2(3μ+1)+1,n≥3)的维数
    施锡泉
    科学通报 , 1991, (21) : 1676
  • [22] On the diophantine equation (2n-1)(3n-1) = x2
    Szalay, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (1-2): : 1 - 9
  • [23] A note on |N,p,q|k, (1 <= k <= 2) summability of orthogonal series
    Krasniqi, Xhevat Z.
    NOTE DI MATEMATICA, 2010, 30 (02): : 135 - 139
  • [24] The Sum 16n Σk=02n 4k(k1/2) (k-1/2) (-2n-k-2k): Proof of its Closed Form
    Larcombe, Peter J.
    Larsen, Mogens E.
    UTILITAS MATHEMATICA, 2009, 79 : 3 - 7
  • [25] Single Photon K-2 and K-1K-1 Double Core Ionization in C2H2n (n=1-3), CO, and N2 as a Potential New Tool for Chemical Analysis
    Nakano, M.
    Penent, F.
    Tashiro, M.
    Grozdanov, T. P.
    Zitnik, M.
    Carniato, S.
    Selles, P.
    Andric, L.
    Lablanquie, P.
    Palaudoux, J.
    Shigemasa, E.
    Iwayama, H.
    Hikosaka, Y.
    Soejima, K.
    Suzuki, I. H.
    Kouchi, N.
    Ito, K.
    PHYSICAL REVIEW LETTERS, 2013, 110 (16)
  • [26] Integral representation of the pictorial proof of Sigma(n)(k=1) k(2) =1/6n(n+1)(2n+1)
    Kobayashi, Yukio
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2011, 42 (02) : 235 - 239
  • [27] THE DIMENSION OF THE SPLINE SPACE Sk~μ(△n)(k≥22n-2(3μ+1 )+ 1)
    施锡泉
    Chinese Science Bulletin, 1992, (05) : 436 - 437
  • [28] The Sum 16n Σk=02n 4k (k1/2) (k-1/2) (2n-k-2k): A Third Proof of its Closed Form
    Gessel, Ira M.
    Larcombe, Peter J.
    UTILITAS MATHEMATICA, 2009, 80 : 59 - 63
  • [29] Euler tours of maximum girth in K2n+1 and K2n,2n
    Oksimets, N
    GRAPHS AND COMBINATORICS, 2005, 21 (01) : 107 - 118
  • [30] Euler Tours of Maximum Girth in K2n+1 and K2n,2n
    Natalia Oksimets
    Graphs and Combinatorics, 2005, 21 : 107 - 118