Guanidinium/Hydroxyl-Functionalized Polybenzimidazole for High-Temperature Proton Exchange Membrane Fuel Cell Applications

被引:7
|
作者
Ji, Jiayuan [1 ]
Han, Yuyang [1 ]
Xu, Fei [1 ]
Chu, Fuqiang [1 ]
Li, Yanting [1 ]
Lin, Bencai [1 ]
机构
[1] Changzhou Univ, Jiangsu Collaborat Innovat Ctr Photovolat Sci & En, Sch Mat Sci & Engn, Changzhou 213164, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
proton exchange membrane; fuel cell; polybenzimidazole; proton conductivity; proton exchange membrane fuel cells; IONIC LIQUID; POLYSILSESQUIOXANE;
D O I
10.1021/acsaem.3c02471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, polybenzimidazole (PBI) functionalized with hydroxyl groups (OH-PBI) is synthesized by the polycondensation of 3,3 '- diaminobenzidine, 4,4 '-dicarboxydiphenyl ether, and 2,5-dihydroxyterephthalic acid. To enhance the phosphoric acid uptake and proton conductivity of PBIbased membranes, tetramethylguanidinium-functionalized PBI (TMG/PBI) is synthesized by introducing guanidinium salts into OH-PBI. The as-prepared TMG/PBI-based membranes show good oxidization and thermal and dimensional stability. Owing to guanidinium functionalization, the TMG/ PBI-based membranes show higher PA uptake, PA retention, and proton conductivity values than pure PBI and OH-PBI-based membranes. Additionally, single fuel cells comprising TMG/PBI-10 exhibit a significantly higher maximum power density (545.49 mW cm(-2)) at 120 degrees C than those comprising pure PBI membranes (196.15 mW cm(-2)). Thus, the as-prepared TMG/PBI-X membranes are promising materials for high-temperature proton exchange membrane fuel cell applications.
引用
收藏
页码:11754 / 11761
页数:8
相关论文
共 50 条
  • [31] Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells
    Xue, Chao
    Zou, Jing
    Sun, Zhaonan
    Wang, Fanghui
    Han, Kefei
    Zhu, Hong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (15) : 7931 - 7939
  • [32] Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells
    Jheng, Li-Cheng
    Rosidah, Afira Ainur
    Hsu, Steve Lien-Chung
    Ho, Ko-Shan
    Pan, Chun-Jern
    Cheng, Cheng-Wei
    RSC ADVANCES, 2021, 11 (17) : 9964 - 9976
  • [33] A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell
    Ou, Tengjiao
    Chen, Haixin
    Hu, Bihua
    Zheng, Haitao
    Li, Weihua
    Wang, Yi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (27) : 12337 - 12345
  • [34] High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells
    Plackett, David
    Siu, Ana
    Li, Qingfeng
    Pan, Chao
    Jensen, Jens Oluf
    Nielsen, Soren Faester
    Permyakova, Anastasia A.
    Bjerrum, Niels J.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 383 (1-2) : 78 - 87
  • [35] Polybenzimidazole-Based Semi-Interpenetrating Proton Exchange Membrane with Enhanced Stability and Excellent Performance for High-Temperature Proton Exchange Membrane Fuel Cells
    Jiang, Junqiao
    Jiang, Xunyuan
    Xiao, Min
    Han, Dongmei
    Wang, Shuanjin
    Meng, Yuezhong
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 13316 - 13326
  • [36] Polybenzimidazole membrane crosslinked with quaternized polyaniline as high-temperature proton exchange membrane: Enhanced proton conductivity and stability
    Xiao, Yiming
    Shen, Xiaoyu
    Sun, Ranxin
    Wang, Songbo
    Xiang, Jun
    Zhang, Lei
    Cheng, Penggao
    Du, Xinjun
    Yin, Zhen
    Tang, Na
    JOURNAL OF MEMBRANE SCIENCE, 2022, 660
  • [37] Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications
    Xu, Bing
    Li, Dongxu
    Ma, Zheshu
    Zheng, Meng
    Li, Yanju
    MATHEMATICS, 2021, 9 (15)
  • [38] The effects of excess phosphoric acid in a Polybenzimidazole-based high temperature proton exchange membrane fuel cell
    Matar, Saif
    Higier, Andrew
    Liu, Hongtan
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 181 - 184
  • [39] Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications
    Chen, Jyh-Chien
    Chen, Ping-Yen
    Liu, Yen-Chun
    Chen, Kuei-Hsien
    JOURNAL OF MEMBRANE SCIENCE, 2016, 513 : 270 - 279
  • [40] Investigating effects of polybenzimidazole loading design in the catalyst layer on the performance of polybenzimidazole-based high-temperature proton exchange membrane fuel cell through experiments and simulations
    Su, Ay
    Ferng, Yuh-Ming
    Tsai, X. Y.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (10) : 1213 - 1222