A GENERIC REFINEMENT TO THE CAUCHY-SCHWARZ INEQUALITY

被引:1
|
作者
Masjed-Jamei, Mohammad [1 ]
机构
[1] KN Toosi Univ Technol, Fac Math, Tehran, Iran
来源
关键词
generic refinement; Cauchy-Schwarz inequality; inner product spaces; probability spaces;
D O I
10.2298/PIM2328103M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a generic refinement to the Cauchy-Schwarz inequality in both inner product space and probability space and study some of its special cases.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 50 条
  • [31] A note on the Cauchy-Schwarz inequality for expectations
    Farhadian, Reza
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 812 - 813
  • [32] THE CAUCHY-SCHWARZ INEQUALITY - A GEOMETRIC PROOF
    CANNON, JW
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (07): : 630 - 631
  • [33] A CAUCHY-SCHWARZ INEQUALITY FOR OPERATORS WITH APPLICATIONS
    BHATIA, R
    DAVIS, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 119 - 129
  • [34] A CAUCHY-SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS
    Arav, Marina
    Hall, Frank J.
    Li, Zhongshan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04): : 629 - 634
  • [35] ON A SPECIAL FORM OF THE CAUCHY-SCHWARZ INEQUALITY
    THIELE, L
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1985, 319 (04): : 405 - 412
  • [36] Cauchy-Schwarz inequality and particle entanglement
    Wasak, T.
    Szankowski, P.
    Zin, P.
    Trippenbach, M.
    Chwedenczuk, J.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [37] A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds
    Al-Dolat, Mohammed
    Jaradat, Imad
    FILOMAT, 2023, 37 (03) : 971 - 977
  • [38] Bell inequality for qubits based on the Cauchy-Schwarz inequality
    Chen, Jing-Ling
    Deng, Dong-Ling
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [39] REFINEMENTS OF THE CAUCHY-SCHWARZ INEQUALITY FOR τ-MEASURABLE OPERATORS
    Han, Yazhou
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 919 - 931
  • [40] A strengthened Cauchy-Schwarz inequality for biorthogonal wavelets
    De Rossi, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (02): : 263 - 282