Accurate use of label dependency in multi-label text classification through the lens of causality

被引:3
|
作者
Fan, Caoyun [1 ]
Chen, Wenqing [2 ]
Tian, Jidong [1 ]
Li, Yitian [1 ]
He, Hao [1 ]
Jin, Yaohui [1 ]
机构
[1] Shanghai Jiao Tong Univ, AI Inst, MoE Key Lab Artificial Intelligence, Shanghai, Peoples R China
[2] Sun Yat Sen Univ, Sch Software Engn, Guangzhou, Peoples R China
关键词
Multi-label text classification; Label dependency; Correlation shortcut; Counterfactual de-bias;
D O I
10.1007/s10489-023-04623-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-Label Text Classifiction (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.
引用
收藏
页码:21841 / 21857
页数:17
相关论文
共 50 条
  • [21] Multi-label Classification of Legislative Text into EuroVoc
    Boella, Guido
    Di Caro, Luigi
    Lesmo, Leonardo
    Daniele, Rispoli
    Robaldo, Livio
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS (JURIX 2012), 2012, 250 : 21 - 30
  • [22] Multi-label arabic text classification: an overview
    Aljedani N.
    Alotaibi R.
    Taileb M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (10): : 694 - 706
  • [23] Multi-Label Arabic Text Classification: An Overview
    Aljedani, Nawal
    Alotaibi, Reem
    Taileb, Mounira
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 694 - 706
  • [24] Integrating Label Semantic Similarity Scores into Multi-label Text Classification
    Chen, Zihao
    Liu, Yang
    Cheng, Baitai
    Peng, Jing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 234 - 245
  • [25] Multi-label Text Classification Method Based on Label Semantic Information
    Xiao L.
    Chen B.-L.
    Huang X.
    Liu H.-F.
    Jing L.-P.
    Yu J.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1079 - 1089
  • [26] Label-Specific Document Representation for Multi-Label Text Classification
    Xiao, Lin
    Huang, Xin
    Chen, Boli
    Jing, Liping
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 466 - 475
  • [27] Multi-label text classification based on the label correlation mixture model
    He, Zhiyang
    Wu, Ji
    Lv, Ping
    INTELLIGENT DATA ANALYSIS, 2017, 21 (06) : 1371 - 1392
  • [28] Variational Continuous Label Distribution Learning for Multi-Label Text Classification
    Zhao, Xingyu
    An, Yuexuan
    Xu, Ning
    Geng, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2716 - 2729
  • [29] Multi-Label Text Classification Based on Label Combination and Fusion of Attentions
    Wu, Xinke
    Sun, Jun
    Li, Zhihua
    Computer Engineering and Applications, 2023, 59 (06) : 125 - 133
  • [30] Improved Conditional Dependency Networks for Multi-label Classification
    Guo Tao
    Li Guiyang
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 561 - 565