A Semi-streaming Algorithm for Monotone Regularized Submodular Maximization with a Matroid Constraint

被引:0
|
作者
Nong, Qing-Qin [1 ]
Wang, Yue [1 ]
Gong, Su-Ning [2 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Regularized Submodular Maximization; Possible Negative Objective; Matroid Constraint; Semi-Streaming Algorithm; APPROXIMATION; OPTIMIZATION;
D O I
10.1007/s40305-023-00525-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the face of large-scale datasets in many practical problems, it is an effective method to design approximation algorithms for maximizing a regularized submodular function in a semi-streaming model. In this paper, we study the monotone regularized submodular maximization with a matroid constraint and present a single-pass semi-streaming algorithm using multilinear extension function and greedy idea. We show that our algorithm has an approximation ratio of((beta-1)(1-e(-alpha))/beta+alpha beta-alpha, beta(beta-1)(1-e(-alpha))/beta+alpha beta-alpha)and amemory of O(r(M)), wherer(M)is the rank of the matroid and parameters alpha, beta >1.Specifically, if alpha=1.18 and beta=9.784, our algorithm is(0.302,2.955)-approximate.If alpha=1.257 and beta=3.669, our algorithm is(0.272 6,1)-approximate.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint
    Tang, Jing
    Tang, Xueyan
    Lim, Andrew
    Han, Kai
    Li, Chongshou
    Yuan, Junsong
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2021, 5 (01)
  • [22] Multipass Streaming Algorithms for Regularized Submodular Maximization
    Gong, Qingin
    Gao, Suixiang
    Wang, Fengmin
    Yang, Ruiqi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (01): : 76 - 85
  • [23] Approximation Guarantees for Deterministic Maximization of Submodular Function with a Matroid Constraint
    Sun, Xin
    Xu, Dachuan
    Guo, Longkun
    Li, Min
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 205 - 214
  • [24] Weakly k-submodular Maximization Under Matroid Constraint
    Wang, Yijing
    Zhang, Dongmei
    Zhang, Yapu
    Zhang, Zhenning
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 393 - 401
  • [25] Differentially Private Monotone Submodular Maximization Under Matroid and Knapsack Constraints
    Sadeghi, Omid
    Fazel, Maryam
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [26] Non-monotone Submodular Maximization under Matroid and Knapsack Constraints
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 323 - 332
  • [27] New approximations for monotone submodular maximization with knapsack constraint
    Du, Hongmin W.
    Li, Xiang
    Wang, Guanghua
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (04)
  • [28] On maximizing a monotone k-submodular function subject to a matroid constraint
    Sakaue, Shinsaku
    DISCRETE OPTIMIZATION, 2017, 23 : 105 - 113
  • [29] k-Submodular Maximization with a Knapsack Constraint and p Matroid Constraints
    Liu, Qian
    Yu, Kemin
    Li, Min
    Zhou, Yang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (05): : 896 - 905
  • [30] Streaming Algorithms for News and Scientific Literature Recommendation: Monotone Submodular Maximization With a d-Knapsack Constraint
    Yu, Qilian
    Xu, Li
    Cui, Shuguang
    IEEE ACCESS, 2018, 6 : 53736 - 53747