Privacy-Preserving Medical Data Generation Using Adversarial Learning

被引:0
|
作者
Das, Pronaya Prosun [1 ]
Tawadros, Despina [1 ]
Wiese, Lena [1 ,2 ]
机构
[1] Fraunhofer Inst Toxicol & Expt Med, Hannover, Germany
[2] Goethe Univ Frankfurt, Inst Comp Sci, Frankfurt, Germany
来源
关键词
Adversarial Learning; Renyi Differential Privacy; GAN; Variational Autoencoders; Synthetic Data Generation; Healthcare; Medical data;
D O I
10.1007/978-3-031-49187-0_2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Outstanding performance has been observed in a number of real-world applications such as speech processing and image classification using deep learning models. However, developing these kinds of models in sensitive domains such as healthcare usually necessitates dealing with a specific level of privacy challenges which provide unique concerns. For managing such privacy concerns, a practical method might involve generating feasible synthetic data that not only provides acceptable data quality but also helps to improve the efficiency of the model. Synthetic Data Generation (SDG) innately includes Generative Adversarial Networks (GANs) that have drawn significant interest in this field as a result of their achievement in various other research areas. In the study, a framework safeguarding privacy, which employs R ' enyi Differential Privacy along with Generative Adversarial Networks and a Variational Autoencoder (RDP-VAEGAN), is introduced. This approach is evaluated and contrasted with other top-tier models having identical privacy constraints, utilizing both unsupervised and supervised methods on two medical datasets that are publicly accessible.
引用
收藏
页码:24 / 41
页数:18
相关论文
共 50 条
  • [31] A Graph Data Privacy-Preserving Method Based on Generative Adversarial Networks
    Li, Aiping
    Fang, Junbin
    Jiang, Qianye
    Zhou, Bin
    Jia, Yan
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 227 - 239
  • [32] ALRS: An Adversarial Noise Based Privacy-Preserving Data Sharing Mechanism
    Chen, Jikun
    Deng, Ruoyu
    Chen, Hongbin
    Ruan, Na
    Liu, Yao
    Liu, Chao
    Su, Chunhua
    INFORMATION SECURITY AND PRIVACY, ACISP 2021, 2021, 13083 : 490 - 509
  • [33] PRIVACY-PRESERVING SERVICES USING FEDERATED LEARNING
    Taylor, Paul
    Kiss, Stephanie
    Gullon, Lucy
    Yearling, David
    Journal of the Institute of Telecommunications Professionals, 2022, 16 : 16 - 22
  • [34] Privacy-preserving quantum machine learning using differential privacy
    Senekane, Makhamisa
    Mafu, Mhlambululi
    Taele, Benedict Molibeli
    2017 IEEE AFRICON, 2017, : 1432 - 1435
  • [35] Privacy-preserving data mining of medical data using data separation-based techniques
    Gang, Kou
    Yi, Peng
    Yong, Shi
    Zhengxin, Chen
    Data Science Journal, 2007, 6 (SUPPL.)
  • [36] PPGAN: Privacy-preserving Generative Adversarial Network
    Liu, Yi
    Peng, Jialiang
    Yu, James J. Q.
    Wu, Yi
    2019 IEEE 25TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2019, : 985 - 989
  • [37] Learning Privacy-Preserving Embeddings for Image Data to Be Published
    Li, Chu-Chen
    Li, Cheng-Te
    Lin, Shou-De
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (06)
  • [38] Impact of social learning on privacy-preserving data collection
    Akbay A.B.
    Wang W.
    Zhang J.
    Akbay, Abdullah Basar (aakbay@asu.edu), 1600, Institute of Electrical and Electronics Engineers Inc. (02): : 268 - 282
  • [39] A Privacy-preserving Cancelable Palmprint Template Generation Scheme Using Noise Data
    Qiu, Jian
    Li, Hengjian
    Dong, Jiwen
    Feng, Guang
    IIP'17: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING, 2017,
  • [40] Privacy-Preserving Deep Learning on Big Data in Cloud
    Fan, Yongkai
    Zhang, Wanyu
    Bai, Jianrong
    Lei, Xia
    Li, Kuanching
    CHINA COMMUNICATIONS, 2023, 20 (11) : 176 - 186