Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery

被引:3
|
作者
Dong, Yuanjin [1 ]
Meng, Jian [1 ]
Sun, Xiaomei [1 ]
Zhao, Peidong [1 ]
Sun, Peng [1 ]
Zheng, Bin [1 ]
机构
[1] ShanDong Univ Technol, Coll Transportat & Vehicle Engn, Zibo 255049, Peoples R China
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2023年 / 14卷 / 10期
关键词
triggering mode; thermal runaway; lithium-ion battery; carbon neutrality; INTERNAL SHORT-CIRCUIT; TEMPERATURE; DISCHARGE; MECHANISM;
D O I
10.3390/wevj14100270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As an important component of new energy vehicles, the safety of lithium-ion batteries has attracted extensive attention. To reveal the mechanism and characteristics of ternary lithium-ion batteries under different trigger modes, an experimental system was established. The effects of different trigger modes on battery surface temperature, battery internal temperature, injection time, and battery voltage were analyzed. Among them, acupuncture, overheating, and overcharging are used as trigger conditions for mechanical, thermal, and electrical abuse. The results show that the injection time and surface peak temperature are positively correlated with the energy input before thermal runaway. Before the cell triggers abuse, the more input energy, the higher the cell surface temperature, the more serious the thermal runaway, and the higher the damage to the surrounding battery system. Under the same conditions, the intensity and damage degree of overcharge thermal runaway are greater than those of internal short circuit and overtemperature. The abnormal change of voltage suddenly rising and rapidly falling can be used as a condition to judge whether overcharge thermal runaway occurs. Finally, according to the temperature curves at different positions, the thermal diffusion law under different abuse conditions is summarized, which provides a basis for the safety design of the battery module.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Experimental study on the thermal runaway hazard quantification and its assessment parameters in the lithium-ion battery
    Hu, Xiangyu
    Zhu, Guoqing
    Liu, Tong
    Cui, Shaoqi
    Guo, Xianyang
    Chen, Xi
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [22] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [23] Effect of discharge operation on thermal runaway incubation process of lithium-ion battery: An experimental study
    Hu, Jian
    Liu, Tong
    Wang, Xishi
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 185 : 25 - 35
  • [24] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [25] Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery
    Zhou, Zhizuan
    Li, Maoyu
    Zhou, Xiaodong
    Ju, Xiaoyu
    Yang, Lizhong
    APPLIED ENERGY, 2023, 349
  • [26] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [27] Lithium-Ion Battery Thermal Runaway: Experimental Analysis of Particle Deposition in Battery Module Environment
    Hoelle, Sebastian
    Kim, Hyojeong
    Zimmermann, Sascha
    Hinrichsen, Olaf
    BATTERIES-BASEL, 2024, 10 (06):
  • [28] Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents
    Li, Lun
    Ju, Xiaoyu
    Zhou, Xiaodong
    Peng, Yang
    Zhou, Zhizuan
    Cao, Bei
    Yang, Lizhong
    MATERIALS, 2021, 14 (16)
  • [29] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [30] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Chonglv Cheng
    Fanfu Kong
    Conghui Shan
    Baopeng Xu
    Fire Technology, 2023, 59 : 1073 - 1087