Automated Segmentation of Brain Tumor MRI Images Using Deep Learning

被引:11
|
作者
Rajendran, Surendran [1 ]
Rajagopal, Suresh Kumar [2 ]
Thanarajan, Tamilvizhi [3 ]
Shankar, K. [1 ]
Kumar, Sachin [4 ]
Alsubaie, Najah M. [5 ]
Ishak, Mohamad Khairi [6 ]
Mostafa, Samih M. [7 ,8 ]
机构
[1] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Comp Sci & Engn, Chennai 602105, India
[2] Chennai Inst Technol, Ctr Syst Design, Chennai 600069, India
[3] Panimalar Engn Coll, Dept Comp Sci & Engn, Chennai 600123, India
[4] South Ural State Univ, Big Data & Machine Learning Lab, Chelyabinsk 454080, Russia
[5] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 454080, Saudi Arabia
[6] Univ Sains Malaysia, Sch Elect & Elect Engn, Engn Campus, George Town 14300, Malaysia
[7] South Valley Univ, Fac Comp & Informat, Comp Sci Dept, Qena 83523, Egypt
[8] New Assiut Technol Univ NATU, Fac Ind & Energy Technol, Assiut 71515, Egypt
关键词
Brain tumor; medical imaging; segmentation; three dimensional CNN; U-Net;
D O I
10.1109/ACCESS.2023.3288017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Segmenting brain tumors automatically using MR data is crucial for disease investigation and monitoring. Due to the aggressive nature and diversity of gliomas, well-organized and exact segmentation methods are used to classify tumors intra-tumorally. The proposed technique uses a Gray Level Co-occurrence matrix extraction of features approach to strip out unwanted details from the images. In comparison with the current state of the art, the accuracy of brain tumor segmentation was significantly improved using Convolutional Neural Networks, which are frequently used in the field of biomedical image segmentation. By merging the results of two separate segmentation networks, the proposed method demonstrates a major but simple combinatorial strategy that, as a direct consequence, yields much more precise and complete estimates. A U-Net and a Three-Dimensional Convolutional Neural Network. These networks are used to break up images into their component parts. Following that, the prediction was constructed using two distinct models that were combined in a number of ways. In comparison to existing state-of-the-art designs, the proposed method achieves the mean accuracy (%) of 99.40, 98.46, 98.29, precision (%) of 99.41, 98.51, 98.35, F-Score (%) of 99.4, 98.29, 98.46 and sensitivity (%) of 99.39, 98.41, 98.25 for the whole tumor, enhanced tumor, tumor core on the validation set, respectively.
引用
收藏
页码:64758 / 64768
页数:11
相关论文
共 50 条
  • [21] Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review
    Jyothi, Parvathy
    Singh, A. Robert
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (04) : 2923 - 2969
  • [22] Brain Tumor Segmentation Using Ensemble Deep Neural Networks with MRI Images
    Cohen, Miri Weiss
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 421 - 432
  • [23] Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning
    Benjelloun, Mohammed
    El Adoui, Mohammed
    Larhmam, Mohamed Amine
    Mahmoudi, Sidi Ahmed
    2018 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2018,
  • [24] Deep learning for brain tumor segmentation in multimodal MRI images: A review of methods and advances
    Jiang, Bin
    Liao, Maoyu
    Zhao, Yun
    Li, Gen
    Cheng, Siyu
    Wang, Xiangkai
    Xia, Qingling
    IMAGE AND VISION COMPUTING, 2025, 156
  • [25] Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
    Ranjbarzadeh, Ramin
    Kasgari, Abbas Bagherian
    Ghoushchi, Saeid Jafarzadeh
    Anari, Shokofeh
    Naseri, Maryam
    Bendechache, Malika
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images
    Ramin Ranjbarzadeh
    Abbas Bagherian Kasgari
    Saeid Jafarzadeh Ghoushchi
    Shokofeh Anari
    Maryam Naseri
    Malika Bendechache
    Scientific Reports, 11
  • [27] Analysis of MRI brain tumor images using deep learning techniques
    Kalyani, B. J. D.
    Meena, K.
    Murali, E.
    Jayakumar, L.
    Saravanan, D.
    SOFT COMPUTING, 2023, 27 (11) : 7535 - 7542
  • [28] A deep learning approach for brain tumor classification using MRI images*
    Aamir, Muhammad
    Rahman, Ziaur
    Dayo, Zaheer Ahmed
    Abro, Waheed Ahmed
    Uddin, M. Irfan
    Khan, Inayat
    Imran, Ali Shariq
    Ali, Zafar
    Ishfaq, Muhammad
    Guan, Yurong
    Hu, Zhihua
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [29] Self-Supervised Contrastive Learning for Automated Segmentation of Brain Tumor MRI Images in Schizophrenia
    Meng, Lingmiao
    Zhao, Liwei
    Yi, Xin
    Yu, Qingming
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [30] MRI Brain Tumor Segmentation and Classification using different deep learning models
    School Of Computer Science And Engineering, Vellore Institute Of Technology, Chennai, India
    Int. Conf. Adv. Data Eng. Intell. Comput. Syst., ADICS, 2024,