Multi-source domain adaptation of GPR data for IED detection

被引:1
|
作者
Oturak, Mehmet [1 ]
Yuksel, Seniha Esen [1 ]
Kucuk, Sefa [1 ,2 ]
机构
[1] Hacettepe Univ, Dept Elect & Elect Engn, Beytepe, TR-06800 Ankara, Turkey
[2] Erzurum Tech Univ, Dept Elect & Elect Engn, TR-25050 Erzurum, Turkey
关键词
Classification; GPR; Ground penetrating radar; IED; Knowledge transfer; LS-SVM; Transfer learning; GROUND-PENETRATING RADAR; LANDMINE DETECTION; ALGORITHMS;
D O I
10.1007/s11760-022-02394-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Learning an object category from only a few samples is generally inadequate for the correct classification of large-scale problems. One needs many training samples to obtain a classifier that generalizes well and has reasonable success rates for an operator. However, collecting many annotated data is not always possible in several applications, including target detection from ground penetrating radar (GPR) data. Furthermore, GPR images of target or clutter objects show a nonlinear dependence on soil permeability and permittivity. Therefore, even if enough training data were available to train a good classifier for one soil type (such as dry sand), the success of this classifier does not translate well if the soil type is changed (say, to wet sand). To decrease this domain gap, in this work, we propose to do a multi-model knowledge transfer (KT) for improvised explosive device detection from GPR data and investigate how effective it is to pass the models learned from known environments to models trained for unknown environments. We show that (1) knowledge transfer from multiple sources (i.e., multiple types of sand) generates better results than single-source transfer, and (2) as little as three training data from the unknown source increases the detection rates by 10% for single KT and 4% for multiple KT on simulated data. Further, we show that adapting the models for each type of source is a better approach than just combining all the training data in a single model. These results demonstrate that a multi-source domain adaptation approach significantly reduces data collection and manual annotation efforts and increases detection rates in unknown environments.
引用
收藏
页码:1831 / 1839
页数:9
相关论文
共 50 条
  • [41] Weighted alignment-based multi-source domain adaptation for object detection
    Han, Joonhwan
    Woo, Seungbeom
    Hwang, Joong-won
    Hwang, Wonjun
    ELECTRONICS LETTERS, 2023, 59 (02)
  • [42] Multi-EPL: Accurate multi-source domain adaptation
    Lee, Seongmin
    Jeon, Hyunsik
    Kang, U.
    PLOS ONE, 2021, 16 (08):
  • [43] STEM: An approach to Multi-source Domain Adaptation with Guarantees
    Nguyen, Van-Anh
    Nguyen, Tuan
    Le, Trung
    Tran, Quan Hung
    Phung, Dinh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9332 - 9343
  • [44] Weighted progressive alignment for multi-source domain adaptation
    Kunhong Wu
    Liang Li
    Yahong Han
    Multimedia Systems, 2023, 29 : 117 - 128
  • [45] Riemannian representation learning for multi-source domain adaptation
    Chen, Sentao
    Zheng, Lin
    Wu, Hanrui
    PATTERN RECOGNITION, 2023, 137
  • [46] Multi-Source Unsupervised Domain Adaptation with Prototype Aggregation
    Huang, Min
    Xie, Zifeng
    Sun, Bo
    Wang, Ning
    MATHEMATICS, 2025, 13 (04)
  • [47] Multi-Source Domain Adaptation for Visual Sentiment Classification
    Lin, Chuang
    Zhao, Sicheng
    Meng, Lei
    Chua, Tat-Seng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2661 - 2668
  • [48] Attention-Based Multi-Source Domain Adaptation
    Zuo, Yukun
    Yao, Hantao
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3793 - 3803
  • [49] Improved multi-source domain adaptation by preservation of factors
    Schrom, Sebastian
    Hasler, Stephan
    Adamy, Juergen
    IMAGE AND VISION COMPUTING, 2021, 112
  • [50] Universal multi-Source domain adaptation for image classification
    Yin, Yueming
    Yang, Zhen
    Hu, Haifeng
    Wu, Xiaofu
    PATTERN RECOGNITION, 2022, 121