Robust Bayesian estimator in a normal model with uncertain hierarchical priors

被引:0
|
作者
Hu, Guikai [1 ]
Xiao, Xinhai [1 ]
机构
[1] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Robust Bayes estimator; uncertainty hierarchical priors; error variance; normal linear model;
D O I
10.1080/03610926.2021.1917615
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, robust Bayesian estimators of error variance in a normal linear model with uncertain hierarchical prior information are investigated. The posterior regret gamma minimax estimator, the least sensitive estimator and conditional gamma minimax estimator for error variance are obtained under two different classes of priors, respectively. A simulation study is used to compare the performance of the proposed estimators. A real data example is also given to illustrate the results.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 50 条
  • [31] An off-grid direction-of-arrival estimator based on sparse Bayesian learning with three-stage hierarchical Laplace priors
    Li, Ninghui
    Zhang, Xiao-Kuan
    Zong, Binfeng
    Lv, Fan
    Xu, JiaHua
    Wang, Zhaolong
    SIGNAL PROCESSING, 2024, 218
  • [32] Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors
    Zhao, Ningning
    Basarab, Adrian
    Kouame, Denis
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3736 - 3750
  • [33] Non-blind image blur removal method based on a Bayesian hierarchical model with hyperparameter priors
    Yang, Haoyuan
    Su, Xiuqin
    Wu, Jing
    Chen, Songmao
    OPTIK, 2020, 204
  • [34] MULTIPATH MITIGATION IN GLOBAL NAVIGATION SATELLITE SYSTEMS USING A BAYESIAN HIERARCHICAL MODEL WITH BERNOULLI LAPLACIAN PRIORS
    Lesouple, J.
    Tourneret, J-Y
    Sahmoudi, M.
    Barbiero, F.
    Faurie, F.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 578 - 582
  • [35] Selection of model discrepancy priors in Bayesian calibration
    Ling, You
    Mullins, Joshua
    Mahadevan, Sankaran
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 665 - 680
  • [36] Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors
    Scarpa, Bruno
    Dunson, David B.
    BIOMETRICS, 2009, 65 (03) : 772 - 780
  • [37] Bayesian modeling of school effects using hierarchical models with smoothing priors
    Li, ML
    Tobias, J
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2005, 9 (03):
  • [38] Bayesian model selection using encompassing priors
    Klugkist, I
    Kato, B
    Hoijtink, H
    STATISTICA NEERLANDICA, 2005, 59 (01) : 57 - 69
  • [39] Bayesian object matching with hierarchical priors and Markov chain Monte Carlo
    Tamminen, T
    Lampinen, J
    BAYESIAN STATISTICS 7, 2003, : 691 - 700
  • [40] Bayesian Atlas Building with Hierarchical Priors for Subject-Specific Regularization
    Wang, Jian
    Zhang, Miaomiao
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT IV, 2021, 12904 : 76 - 86