Real-Time Energy Management in Smart Homes Through Deep Reinforcement Learning

被引:5
|
作者
Aldahmashi, Jamal [1 ,2 ]
Ma, Xiandong [1 ]
机构
[1] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
[2] Northern Border Univ, Coll Engn, Dept Elect Engn, Ar Ar 73213, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
Power factor correction; home energy management; appliances scheduling; smart homes; reactive power compensation; deep reinforcement learning; DEMAND RESPONSE; SYSTEM; STORAGE;
D O I
10.1109/ACCESS.2024.3375771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In light of the growing prevalence of distributed energy resources, energy storage systems (ESs), and electric vehicles (EVs) at the residential scale, home energy management (HEM) systems have become instrumental in amplifying economic advantages for consumers. These systems traditionally prioritize curtailing active power consumption, often at an expense of overlooking reactive power. A significant imbalance between active and reactive power can detrimentally impact the power factor in the home-to-grid interface. This research presents an innovative strategy designed to optimize the performance of HEM systems, ensuring they not only meet financial and operational goals but also enhance the power factor. The approach involves the strategic operation of flexible loads, meticulous control of thermostatic load in line with user preferences, and precise determination of active and reactive power values for both ES and EV. This optimizes cost savings and augments the power factor. Recognizing the uncertainties in user behaviors, renewable energy generations, and external temperature fluctuations, our model employs a Markov decision process for depiction. Moreover, the research advances a model-free HEM system grounded in deep reinforcement learning, thereby offering a notable proficiency in handling the multifaceted nature of smart home settings and ensuring real-time optimal load scheduling. Comprehensive assessments using real-world datasets validate our approach. Notably, the proposed methodology can elevate the power factor from 0.44 to 0.9 and achieve a significant 31.5% reduction in electricity bills, while upholding consumer satisfaction.
引用
收藏
页码:43155 / 43172
页数:18
相关论文
共 50 条
  • [31] Real-Time Battery Thermal Management for Electric Vehicles Based on Deep Reinforcement Learning
    Huang, Gan
    Zhao, Ping
    Zhang, Guanglin
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) : 14060 - 14072
  • [32] Real-Time Demand Response Management for Controlling Load Using Deep Reinforcement Learning
    Zhao, Yongjiang
    Yoo, Jae Hung
    Lim, Chang Gyoon
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 5671 - 5686
  • [33] Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning
    Unagar, Ajaykumar
    Tian, Yuan
    Chao, Manuel Arias
    Fink, Olga
    ENERGIES, 2021, 14 (05)
  • [34] Smart Scheduling of EVs Through Intelligent Home Energy Management Using Deep Reinforcement Learning
    Suleman, Ahmad
    Amin, M. Asim
    Fatima, Mahnoor
    Asad, Bilal
    Menghwar, Mohan
    Hashmi, Muhammad Adnan
    2022 17TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET'22), 2022, : 18 - 24
  • [35] Enabling Real-Time Quality Inspection in Smart Manufacturing Through Wearable Smart Devices and Deep Learning
    Sarivan, I-M
    Greiner, Johannes N.
    Alvarez, D. Diez
    Euteneuer, F.
    Reichenbach, M.
    Madsen, O.
    Bogh, S.
    30TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM2021), 2020, 51 : 373 - 380
  • [36] Deep Reinforcement Learning for Sponsored Search Real-time Bidding
    Zhao, Jun
    Qiu, Guang
    Guan, Ziyu
    Zhao, Wei
    He, Xiaofei
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1021 - 1030
  • [37] Developing Real-Time Scheduling Policy by Deep Reinforcement Learning
    Bo, Zitong
    Qiao, Ying
    Leng, Chang
    Wang, Hongan
    Guo, Chaoping
    Zhang, Shaohui
    2021 IEEE 27TH REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS 2021), 2021, : 131 - 142
  • [38] Real-time deep reinforcement learning based vehicle navigation
    Koh, Songsang
    Zhou, Bo
    Fang, Hui
    Yang, Po
    Yang, Zaili
    Yang, Qiang
    Guan, Lin
    Ji, Zhigang
    APPLIED SOFT COMPUTING, 2020, 96
  • [39] Real-time energy management of a smart home based on deep deterministic policy gradient
    Zenginis, Ioannis
    Vardakas, John
    Ramantas, Kostas
    Verikoukis, Christos
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [40] Real-Time Energy Management Optimization for Smart Household
    Yao, Leehter
    Shen, Jin-Yi
    Lim, Wei Hong
    2016 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2016, : 20 - 26