Survey of Research on Application of Deep Learning in Modulation Recognition

被引:2
|
作者
Sun, Yongjun [1 ]
Wu, Wanting [1 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation recognition; Deep learning; Neural network; Statistical characteristics; GENERATIVE ADVERSARIAL NETWORKS; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; SPECTRUM; SIGNALS; FRAMEWORK; MODEL;
D O I
10.1007/s11277-023-10826-1
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Modulation recognition is an important research branch in the field of communication, which is widely used in civil and military fields. The classic methods depend on decision theory, signal feature and the choice of classifier, while the deep learning network can get the signal feature directly from the data, and its recognition accuracy is higher than the classic methods. This paper summarized the application of deep learning in modulation recognition. Firstly, the basic concept of deep learning and the common network structure in modulation recognition were introduced. Secondly, the common signal forms and signal preprocessing technologies of input deep learning network were given, and the characteristics and performance of different deep learning networks were summarized and analyzed. Finally, the challenges and future research directions in this field were discussed.
引用
收藏
页码:1785 / 1803
页数:19
相关论文
共 50 条
  • [21] Biometrics recognition using deep learning: a survey
    Shervin Minaee
    Amirali Abdolrashidi
    Hang Su
    Mohammed Bennamoun
    David Zhang
    Artificial Intelligence Review, 2023, 56 : 8647 - 8695
  • [22] A Survey on Deep Learning for Named Entity Recognition
    Li, Jing
    Sun, Aixin
    Han, Jianglei
    Li, Chenliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 50 - 70
  • [23] A Survey of Biometric Recognition Using Deep Learning
    Mehraj H.
    Mir A.H.
    EAI Endorsed Transactions on Energy Web, 2021, 8 (33) : 1 - 16
  • [24] Deep learning for Flight Maneuver Recognition: A survey
    Lu, Jing
    Pan, Longfei
    Deng, Jingli
    Chai, Hongjun
    Ren, Zhou
    Shi, Yu
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01): : 75 - 102
  • [25] A survey for table recognition based on deep learning
    Yu, Chenglong
    Li, Weibin
    Li, Wei
    Zhu, Zixuan
    Liu, Ruochen
    Hou, Biao
    Jiao, Licheng
    NEUROCOMPUTING, 2024, 600
  • [26] A survey on deep learning based face recognition
    Guo, Guodong
    Zhang, Na
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 189
  • [27] Gait Recognition Based on Deep Learning: A Survey
    Goncalves Dos Santos, Claudio Filipi
    Oliveira, Diego De Souza
    Passos, Leandro A.
    Pires, Rafael Goncalves
    Silva Santos, Daniel Felipe
    Valem, Lucas Pascotti
    Moreira, Thierry P.
    Santana, Marcos Cleison S.
    Roder, Mateus
    Papa, Joao Paulo
    Colombo, Danilo
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [28] Deep learning for named entity recognition: a survey
    Hu Z.
    Hou W.
    Liu X.
    Neural Comput. Appl., 16 (8995-9022): : 8995 - 9022
  • [29] Deep Residual Learning for Image Recognition: A Survey
    Shafiq, Muhammad
    Gu, Zhaoquan
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [30] Survey on Handwritten Characters Recognition in Deep Learning
    Malini, M.
    Hemanth, K. S.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 123 - 133