Isothermal Microcalorimetry Analysis of Li/β-MnO2 Discharge

被引:1
|
作者
Arnot, David J. [1 ,2 ]
Vila, Mallory N. [1 ,3 ]
Takeuchi, Esther S. [1 ,2 ,3 ,4 ]
Marschilok, Amy C. [1 ,2 ,3 ,4 ]
Takeuchi, Kenneth J. [1 ,2 ,3 ,4 ]
机构
[1] SUNY Stony Brook, Inst Energy Sustainabil Environm & Equity, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Interdisciplinary Sci Dept, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
battery; batteries; -; lithium; manganese oxide; isothermal microcalorimetry; ELECTROLYTIC MANGANESE-DIOXIDE; PARASITIC REACTIONS; OXIDE NANOWIRES; ION BATTERIES; CATHODE; CELLS; MNO2; DECOMPOSITION; MECHANISM; BETA-MNO2;
D O I
10.1149/1945-7111/ad1ec5
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Despite widespread use over several decades, the lithium/manganese dioxide (Li/MnO2) discharge mechanism is not completely understood owing to the structural complexity of the material. However, an improved understanding could lead to broader adoption as a primary and even secondary cathode material. Here, we examine the discharge of single-phase beta-MnO2 using isothermal microcalorimetry for the first time. Equilibrium voltage and entropy changes are characterized over the entire discharge range and used to rationalize the results. These measurements are supplemented by electrochemical impedance and X-ray diffraction data that give the clearest picture of the beta-MnO2 lithiation process to date. We find that the first half of discharge is dominated by a two-phase reaction to form Li0.5MnO2 followed by single-phase insertion to a composition of Li1.0MnO2, which confirms prior first-principles calculations. The tetragonal beta-MnO2 lattice undergoes asymmetric expansion from Jahn-Teller distorted Mn3+ to form an orthorhombic LiMnO2 phase which retains the 1 <bold>x</bold> 1 tunnel structure. Microcalorimetry results suggest the presence of parasitic reactions occurring during the second half of discharge, which could arise from decomposition of electrolyte or release and reaction of residual water retained in the structure.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] CHARACTERIZATION OF LITHIUM ELECTRODE SURFACE IN LI/MNO2 BATTERIES
    OKAZAKI, R
    TAKADA, K
    KONDO, S
    MIYAKE, H
    TATSUMI, E
    MATSUDA, Y
    DENKI KAGAKU, 1995, 63 (03): : 234 - 237
  • [42] α、β、γ和δ-MnO2吸附Li+的研究
    王小敏
    陈震
    郑曦
    陈日耀
    电池, 2007, (04) : 282 - 283
  • [43] Hydrothermal MnO2:: synthesis, structure, morphology and discharge performance
    Walanda, DK
    Lawrance, GA
    Donne, SW
    JOURNAL OF POWER SOURCES, 2005, 139 (1-2) : 325 - 341
  • [44] Relaxation electrochemical noise of Li/SOCl2 and Li/MnO2 primary batteries
    E. A. Astafev
    Yu. A. Dobrovolsky
    Journal of Solid State Electrochemistry, 2019, 23 : 3319 - 3328
  • [45] Relaxation electrochemical noise of Li/SOCl2 and Li/MnO2 primary batteries
    Astafev, E. A.
    Dobrovolsky, Yu A.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (12) : 3319 - 3328
  • [46] Processing of spent Li/MnO2 batteries to obtain Li2CO3
    Kondas, J.
    Jandova, J.
    Nemeckova, M.
    HYDROMETALLURGY, 2006, 84 (3-4) : 247 - 249
  • [47] α-MnO2 under pressure: Possible route to δ-MnO2
    Alam, Khorsed
    Seriani, Nicola
    Sen, Prasenjit
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07)
  • [48] Controllable fabrication of δ-MnO2 microspheres and α-MnO2 nanorods
    Chen, Yong
    Li, Ling
    Xu, Hui
    Hong, Yuzhen
    Yang, Hao
    Tu, Jinchun
    Ma, Yanping
    Li, Jianbao
    MATERIALS AND DESIGN, PTS 1-3, 2011, 284-286 : 450 - +
  • [49] Synthesis and catalytic activity of α-MnO2 and β-MnO2 nanorods
    Song Xu-Chun
    Yang E
    Zheng Yi-Fan
    Wang Yun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (05) : 919 - 922
  • [50] In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts
    Gao, Fengyu
    Tang, Xiaolong
    Yi, Honghong
    Chu, Chao
    Li, Na
    Li, Jingying
    Zhao, Shunzheng
    CHEMICAL ENGINEERING JOURNAL, 2017, 322 : 525 - 537