Splash singularity for the free boundary incompressible viscous MHD

被引:1
|
作者
Hao, Chengchun [1 ,2 ,3 ]
Yang, Siqi [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划;
关键词
Finite-time singularity; Free boundary problem; Incompressible viscous magnetohydrodynamics; Interface singularity; Splash singularity; SURFACE-TENSION LIMIT; INITIAL-VALUE-PROBLEM; MAGNETOHYDRODYNAMICS;
D O I
10.1016/j.jde.2023.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the existence of smooth initial data for the two-dimensional free boundary incompressible viscous magnetohydrodynamics (MHD) equations, for which the interface remains regular but collapses into a splash singularity (self-intersects in at least one point) in finite time. The existence of the splash singularities is guaranteed by a local existence theorem, in which we need suitable spaces for the modified magnetic field together with the modification of the velocity and pressure such that the modified initial velocity is zero, and a stability result which allows us to construct a class of initial velocities and domains for an arbitrary initial magnetic field. It turns out that the presence of the magnetic field does not prevent the viscous fluid from forming splash singularities for certain smooth initial data. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 103
页数:78
相关论文
共 50 条
  • [21] On the control of layered flow of a viscous incompressible fluid within MHD
    Betelin, V. B.
    Galkin, V. A.
    Dubovik, A. O.
    DOKLADY MATHEMATICS, 2016, 94 (02) : 591 - 593
  • [22] On the control of layered flow of a viscous incompressible fluid within MHD
    V. B. Betelin
    V. A. Galkin
    A. O. Dubovik
    Doklady Mathematics, 2016, 94 : 591 - 593
  • [23] Singularity formation for the incompressible Hall-MHD equations without resistivity
    Chae, Dongho
    Weng, Shangkun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04): : 1009 - 1022
  • [24] Some Asymptotic Decay Results for Incompressible Viscous MHD Equations
    Braz e Silva, P.
    Guterres, R. H.
    Nunes, J. R.
    Zingano, J. P.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (03):
  • [25] Classical Solvability of a Free Boundary Problem for an Incompressible Viscous Fluid with a Surface Density Equation
    Kusaka, Yoshiaki
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [26] Global Existence of Solutions to a Free Boundary Problem for Viscous Incompressible Magnetohydrodynamics for Small Data
    Kacprzyk, Piotr
    Zajaczkowski, Wojciech M.
    MATHEMATICS, 2024, 12 (17)
  • [27] On local solutions to a free boundary problem for incompressible viscous magnetohydrodynamics in the Lp-approach
    Shibata, Yoshihiro
    Zajaczkowski, Wojciech M.
    DISSERTATIONES MATHEMATICAE, 2021, 566 : 1 - 102
  • [28] On the Dynamics of the Boundary Vorticity for Incompressible Viscous Flows
    Vladislav Cherepanov
    Jian-Guo Liu
    Zhongmin Qian
    Journal of Scientific Computing, 2024, 99
  • [29] On the Dynamics of the Boundary Vorticity for Incompressible Viscous Flows
    Cherepanov, Vladislav
    Liu, Jian-Guo
    Qian, Zhongmin
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [30] On the Motion of Free Interface in Ideal Incompressible MHD
    Hao, Chengchun
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (02) : 515 - 553