Revealing the Grain-Boundary-Cracking Induced Capacity Decay of a High-Voltage LiCoO2 at 4.6 V

被引:14
|
作者
Yi, Haocong [1 ]
Du, Yuhao [1 ]
Fang, Jianjun [1 ]
Li, Zijian [1 ]
Ren, Hengyu [1 ]
Zhao, Wenguang [1 ]
Chen, Hui [2 ]
Zhou, Lin [1 ]
Zhao, Qinghe [1 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Shenzhen Polytech, Sch Mat & Environm Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
LiCoO2; Interface structure; Grain-boundary-cracking; Capacity decline; Practical applications; CATHODE;
D O I
10.1021/acsami.3c09043
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
During a practical battery manufacture process, the LiCoO2 (LCO) electrodes are usually rolled with high pressure to achieve better performance, including reducing electrode polarization, increasing compact density, enhancing mechanical toughness, etc. In this work, a high-voltage LCO (HV-LCO) is achieved via modulating a commercialized LCO with an Al/F enriched and spinel reinforced surface structure. We reveal that the rolling can more or less introduce risk of grain-boundary-cracking (GBC) inside the HV-LCO and accelerate the capacity decay when cycled at 3-4.6 V vs Li/Li+. In particular, the concept of interface structure is proposed to explain the reason for the deteriorated cycle stability. As the GBC is generated, the interface structure of HV-LCO alters from a surface spinel phase to a hybrid of surface spinel plus boundary layer phases, leading to the exposure of some the nonprotective layer phase against the electrolyte. This alternation causes serious bulk structure damage upon cycles, including expanding GBC among the primary crystals, forming intragranular cracks and inactive spinel phases inside the bulk regions, etc., eventually leading to the deteriorated cycle stability. Above all, we realize that it is far from enough to achieve a eligible high-voltage LCO via only applying surface modification. This work provides a new insight for developing more advanced LCO cathodes.
引用
收藏
页码:42667 / 42675
页数:9
相关论文
共 50 条
  • [21] Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling
    Jiang, Yuyuan
    Qin, Changdong
    Yan, Pengfei
    Sui, Manling
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20824 - 20831
  • [22] Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage
    Yazami, R
    Ozawa, Y
    Gabrisch, H
    Fultz, B
    ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 385 - 390
  • [23] Enhanced high-voltage electrochemical performance of LiCoO2 coated with ZrOxFy
    Wang, Zhiguo
    Wang, Zhixing
    Guo, Huajun
    Peng, Wenjie
    Li, Xinhai
    Wang, Jiexi
    MATERIALS LETTERS, 2014, 123 : 93 - 96
  • [24] Lanthanide Contraction Builds Better High-Voltage LiCoO2 Batteries
    Xia, Jing
    Zhang, Na
    Yang, Yijun
    Chen, Xing
    Wang, Xi
    Pan, Feng
    Yao, Jiannian
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [25] Structure/Interface Coupling Effect for High-Voltage LiCoO2 Cathodes
    Chen, Jun
    Chen, Hongyi
    Zhang, Shu
    Dai, Alvin
    Li, Tianyi
    Mei, Yu
    Ni, Lianshan
    Gao, Xu
    Deng, Wentao
    Yu, Lei
    Zou, Guoqiang
    Hou, Hongshuai
    Dahbi, Mouad
    Xu, Wenqian
    Wen, Jianguo
    Alami, Jones
    Liu, Tongchao
    Amine, Khalil
    Ji, Xiaobo
    ADVANCED MATERIALS, 2022, 34 (42)
  • [26] Synergetic Effect of Electrolyte Coadditives for a High-Voltage LiCoO2 Cathode
    Wen, Xinyang
    Chen, Min
    Zhou, Xianggui
    Chen, Shuai
    Huang, Haonan
    Chen, Jiakun
    Ruan, Digen
    Xiang, Wenjin
    Zhang, Gaige
    Li, Weishan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (01): : 282 - 295
  • [27] Achieving structural stability of LiCoO2 at high-voltage by gadolinium decoration
    Hao, Shuaipeng
    Li, Yunjiao
    Wang, Shan
    Yang, Jiachao
    Tan, Zhouliang
    Li, Xiaohui
    Shen, Xinjie
    Xi, Xiaoming
    Zheng, Junchao
    He, Zhenjiang
    MATERIALS TODAY ENERGY, 2022, 25
  • [28] Research progress of functional electrolyte for high-voltage LiCoO2 battery
    Peng, Dan
    Lu, Junjie
    Ni, Wenjing
    Yang, Yuan
    Wang, Jinglun
    Huagong Xuebao/CIESC Journal, 2024, 75 (09): : 3028 - 3040
  • [29] Functionalized nano-SiO2 for improving the cycling stability of 4.6V high voltage LiCoO2 cathodes
    He, Pan
    Zhang, Yuanxue
    Li, Meng
    Wen, Yuehua
    Wang, Yue
    Qiu, Jingyi
    Ming, Hai
    ELECTROCHIMICA ACTA, 2022, 427
  • [30] Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells
    Zou, MJ
    Yoshio, M
    Gopukumar, S
    Yamaki, J
    CHEMISTRY OF MATERIALS, 2003, 15 (25) : 4699 - 4702