Sea Drift Trajectory Prediction Based on Quantum Convolutional Long Short-Term Memory Model

被引:3
|
作者
Yan, Siyao [1 ]
Zhang, Jing [1 ,2 ]
Parvej, Mosharaf Md [1 ]
Zhang, Tianchi [3 ]
机构
[1] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Peoples R China
[2] Shandong Prov Key Lab Network Based Intelligent Co, Jinan 250000, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Informat Sci & Engn, Chongqing 400074, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 17期
基金
中国国家自然科学基金;
关键词
Long Short-Term Memory Network; quantum convolution; trajectory prediction; TRANSFORMER;
D O I
10.3390/app13179969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a novel Sea Drift Trajectory Prediction method based on the Quantum Convolutional Long Short-Term Memory (QCNN-LSTM) model. Accurately predicting sea drift trajectories is a challenging task, as they are influenced by various complex factors, such as ocean currents, wind speed, and wave morphology. Therefore, in a complex marine environment, there is a need for more applicable and computationally advanced prediction methods. Our approach combines quantized convolutional neural networks with Long Short-Term Memory networks, utilizing two different input types of prediction to enhance the network's applicability. By incorporating quantization techniques, we improve the computational power and accuracy of the trajectory prediction. We evaluate our method using sea drift datasets and AUV drift trajectory datasets, comparing it with other commonly used traditional methods. The experimental results demonstrate significant improvements in accuracy and robustness achieved by our proposed Quantum Convolutional Long Short-Term Memory model. Regardless of the input mode employed, the accuracy consistently surpasses 98%. In conclusion, our research provides a new approach for sea drift trajectory prediction, enhancing prediction accuracy and providing valuable insights for marine environmental management and related decision-making. Future research can further explore and optimize this model to have a greater impact on marine prediction and applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Ballistic Trajectory Prediction Based on Context-enhanced Long Short-Term Memory Network
    Ren J.
    Wu X.
    Bo Y.
    Wu P.
    He S.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (02): : 462 - 471
  • [32] Incrementally trained short-term wind turbine power prediction model based on long short-term memory
    Yu, Qihui
    Liu, Xiaohui
    Tan, Xin
    Qin, Ripeng
    Hao, Xueqing
    Sun, Guoxin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2025,
  • [33] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [34] Deep Convolutional Long Short-Term Memory Network based video abnormal behavior prediction
    Mao, Wenqing
    Guan, Yepeng
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 188 - 195
  • [35] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [36] Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory
    XUE Wendong
    CHAI Yuan
    LI Qigan
    HONG Yongqiang
    ZHENG Gaofeng
    Instrumentation, 2018, 5 (04) : 46 - 54
  • [37] Research on short-term disease risk prediction based on long short-term memory
    Feng, Yanjun
    Wang, Hongxia
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 176 - 176
  • [38] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940
  • [39] Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model
    Baghbani, Asiye
    Bouguila, Nizar
    Patterson, Zachary
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (02) : 1331 - 1340
  • [40] RNA Secondary Structure Prediction Based on Long Short-Term Memory Model
    Wu, Hongjie
    Tang, Ye
    Lu, Weizhong
    Chen, Cheng
    Huang, Hongmei
    Fu, Qiming
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT I, 2018, 10954 : 595 - 599