Fermi isospectrality for discrete periodic Schrodinger operators

被引:6
|
作者
Liu, Wencai [1 ]
机构
[1] Texas A&M Univ, Collage Stn, TX 77843 USA
关键词
EMBEDDED EIGENVALUES; DIRECTIONAL COMPACTIFICATION; POTENTIALS; EIGENFUNCTIONS;
D O I
10.1002/cpa.22161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma=q1Z OPLUS;q2Z OPLUS; horizontal ellipsis & OPLUS;qdZ$\Gamma =q_1\mathbb {Z}\oplus q_2 \mathbb {Z}\oplus \ldots \oplus q_d\mathbb {Z}$, where ql & ISIN;Z+$q_l\in \mathbb {Z}_+$, l=1,2, horizontal ellipsis ,d$l=1,2,\ldots ,d$, are pairwise coprime. Let & UDelta;+V$\Delta +V$ be the discrete Schrodinger operator, where & UDelta; is the discrete Laplacian on Zd$\mathbb {Z}<^>d$ and the potential V:Zd & RARR;C$V:\mathbb {Z}<^>d\rightarrow \mathbb {C}$ is & UGamma;-periodic. We prove three rigidity theorems for discrete periodic Schrodinger operators in any dimension d & GE;3$d\ge 3$: If at some energy level, Fermi varieties of two real-valued & UGamma;-periodic potentials V and Y are the same (this feature is referred to as Fermi isospectrality of V and Y), and Y is a separable function, then V is separable;If two complex-valued & UGamma;-periodic potentials V and Y are Fermi isospectral and both V=⨁j=1rVj$V=\bigoplus _{j=1}<^>rV_j$ and Y=⨁j=1rYj$Y=\bigoplus _{j=1}<^>r Y_j$ are separable functions, then, up to a constant, lower dimensional decompositions Vj$V_j$ and Yj$Y_j$ are Floquet isospectral, j=1,2, horizontal ellipsis ,r$j=1,2,\ldots ,r$;If a real-valued & UGamma;-potential V and the zero potential are Fermi isospectral, then V is zero.(1)(2)(3)In particular, all conclusions in (1), (2) and (3) hold if we replace the assumption "Fermi isospectrality" with a stronger assumption "Floquet isospectrality".
引用
收藏
页码:1126 / 1146
页数:21
相关论文
共 50 条
  • [41] RESONANCE THEORY FOR PERIODIC SCHRODINGER-OPERATORS
    GERARD, C
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (01): : 27 - 54
  • [42] SCHRODINGER OPERATORS WITH POTENTIAL WAVEGUIDES ON PERIODIC GRAPHS
    Post, Olaf
    Saburova, Natalia
    OPERATORS AND MATRICES, 2020, 14 (03): : 601 - 634
  • [43] Welsh eigenvalues of radially periodic Schrodinger operators
    Brown, BM
    Eastham, MSP
    Hinz, AM
    Kriecherbauer, T
    McCormack, DKR
    Schmidt, KM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) : 347 - 357
  • [44] SCHRODINGER OPERATORS WITH GUIDED POTENTIALS ON PERIODIC GRAPHS
    Korotyaev, Evgeny
    Saburova, Natalia
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) : 4869 - 4883
  • [45] Characterization of the spectrum of Schrodinger operators with periodic distributions
    Korotyaev, E
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (37) : 2019 - 2031
  • [46] Extremal spectral gaps for periodic Schrodinger operators
    Kao, Chiu-Yen
    Osting, Braxton
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [47] A FAMILY OF ALMOST PERIODIC SCHRODINGER-OPERATORS
    BAKER, GA
    BESSIS, D
    MOUSSA, P
    PHYSICA A, 1984, 124 (1-3): : 61 - 77
  • [48] DEFECT MODES AND HOMOGENIZATION OF PERIODIC SCHRODINGER OPERATORS
    Hoefer, M. A.
    Weinstein, M. I.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 971 - 996
  • [49] The periodic Schrodinger operators with potentials in the Morrey class
    Shen, ZW
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (02) : 314 - 345
  • [50] Common eigenvalue problem and periodic Schrodinger operators
    Mikhailets, VA
    Sobolev, AV
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (01) : 150 - 172