共 50 条
Fermi isospectrality for discrete periodic Schrodinger operators
被引:6
|作者:
Liu, Wencai
[1
]
机构:
[1] Texas A&M Univ, Collage Stn, TX 77843 USA
关键词:
EMBEDDED EIGENVALUES;
DIRECTIONAL COMPACTIFICATION;
POTENTIALS;
EIGENFUNCTIONS;
D O I:
10.1002/cpa.22161
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let Gamma=q1Z OPLUS;q2Z OPLUS; horizontal ellipsis & OPLUS;qdZ$\Gamma =q_1\mathbb {Z}\oplus q_2 \mathbb {Z}\oplus \ldots \oplus q_d\mathbb {Z}$, where ql & ISIN;Z+$q_l\in \mathbb {Z}_+$, l=1,2, horizontal ellipsis ,d$l=1,2,\ldots ,d$, are pairwise coprime. Let & UDelta;+V$\Delta +V$ be the discrete Schrodinger operator, where & UDelta; is the discrete Laplacian on Zd$\mathbb {Z}<^>d$ and the potential V:Zd & RARR;C$V:\mathbb {Z}<^>d\rightarrow \mathbb {C}$ is & UGamma;-periodic. We prove three rigidity theorems for discrete periodic Schrodinger operators in any dimension d & GE;3$d\ge 3$: If at some energy level, Fermi varieties of two real-valued & UGamma;-periodic potentials V and Y are the same (this feature is referred to as Fermi isospectrality of V and Y), and Y is a separable function, then V is separable;If two complex-valued & UGamma;-periodic potentials V and Y are Fermi isospectral and both V=⨁j=1rVj$V=\bigoplus _{j=1}<^>rV_j$ and Y=⨁j=1rYj$Y=\bigoplus _{j=1}<^>r Y_j$ are separable functions, then, up to a constant, lower dimensional decompositions Vj$V_j$ and Yj$Y_j$ are Floquet isospectral, j=1,2, horizontal ellipsis ,r$j=1,2,\ldots ,r$;If a real-valued & UGamma;-potential V and the zero potential are Fermi isospectral, then V is zero.(1)(2)(3)In particular, all conclusions in (1), (2) and (3) hold if we replace the assumption "Fermi isospectrality" with a stronger assumption "Floquet isospectrality".
引用
收藏
页码:1126 / 1146
页数:21
相关论文