2D/2D BiOIO3/g-C3N4 S-scheme hybrid heterojunction with face-to-face interfacial contact for effective photocatalytic H2 production and norfloxacin degradation

被引:41
|
作者
Lee, Dong-Eun [1 ]
Moru, Satyanarayana [2 ]
Reddy, Kasala Prabhakar [3 ]
Jo, Wan-Kuen [1 ]
Tonda, Surendar [1 ]
机构
[1] Kyungpook Natl Univ, Sch Architecture Civil Environm & Energy Engn, 80 Daehak Ro,Buk Gu, Daegu 41566, South Korea
[2] VIT AP Univ, Vellore Inst Technol Andhra Pradesh, Sch Adv Sci, Amaravati 522237, Andhra Pradesh, India
[3] Univ South Carolina, Dept Chem & Biochem, 631 Sumter St, Columbia, SC 29208 USA
基金
新加坡国家研究基金会;
关键词
g-C; 3; N; 4; BiOIO; Face-to-face interface; 2D; 2D heterojunction; S-scheme charge transfer; Solar energy conversion; CARBON NITRIDE; EFFICIENT; HYDROGEN; CO2; PERFORMANCE; OXIDATION; WATER; FABRICATION; REDUCTION; DESIGN;
D O I
10.1016/j.jmst.2022.11.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A two-dimensional (2D)/2D hybrid heterojunction with face-to-face interfacial assembly is a desirable dimensionality design with significant potential for various photocatalytic applications due to the large interfacial contact area, which facilitates charge migration and separation. Herein, we developed an efficient 2D/2D hybrid heterojunction consisting of BiOIO 3 nanoplates (BIO) and g-C 3 N 4 nanosheets (CN) using a simple but effective in situ growth method for photocatalytic aqueous antibiotic degradation and H 2 generation. The face-to-face interfacial assembly of the BIO and CN components in the BIO/CN hybrid heterojunction was verified using electron microscopy. Remarkably, the BIO/CN hybrid heterojunction outperformed both the BIO and CN counterparts in terms of norfloxacin degradation and H 2 generation under simulated solar light irradiation. Moreover, the photocatalytic performance of the hybrid catalyst remained nearly unchanged throughout five consecutive test runs. The exceptional performance and stability of the hybrid catalyst are attributable to its extended optical absorption range, large interfacial contact area provided by the face-to-face assembly in the 2D/2D hybrid configuration, and enhanced photoexcited charge separation efficiency and redox power of the separated charges, which are supported by an efficient S-scheme charge transfer mechanism. This study illuminates the rational construction of novel 2D/2D S-scheme hybrid heterojunction photocatalysts with practical applications in environmental remediation and sustainable energy generation. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条
  • [41] Enhancement of photocatalytic activity of 2D/2D Sb2WO6/g-C3N4 Z-scheme heterojunction via effective interfacial charge transfer
    Liu, Jinxin
    Liu, Jinyuan
    Peng, Qichang
    Wang, Bin
    Zhu, Xingwang
    Gao, Xue
    Li, Huaming
    Xu, Hui
    Chu, Paul K.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 711
  • [42] 2D/2D g-C3N4/MgFe MMO nanosheet heterojunctions with enhanced visible-light photocatalytic H2 production
    Shi, Jingjing
    Li, Shuangde
    Wang, Fengming
    Gao, Lina
    Li, Yanmei
    Zhang, Xiaorang
    Lu, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 769 : 611 - 619
  • [43] A novel S-scheme 1D/2D Bi2S3/g-C3N4 heterojunctions with enhanced H2 evolution activity
    Zhang, Bin
    Shi, Huanxian
    Yan, Yujia
    Liu, Congquan
    Hu, Xiaoyun
    Liu, Enzhou
    Fan, Jun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 608
  • [44] Rational design of 2D/2D ZnIn2S4/C3N4 heterojunction photocatalysts for enhanced photocatalytic H2 production
    Guan, Peng
    Han, Peigeng
    Yang, Bin
    Yin, Hang
    Liu, Jianyong
    Yang, Songqiu
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (14) : 6583 - 6590
  • [45] 0D/2D Ti3+-TiO2/P-doped g-C3N4 S-scheme heterojunctions for efficient photocatalytic H2 evolution
    Yuan, Min
    Huang, Ke
    Dai, Dongqing
    Yin, Hongfei
    Zhao, Wei
    Jiang, Yixin
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 184
  • [46] Ag nanoparticle-decorated 2D/2D S-scheme g-C3N4/Bi2WO6 heterostructures for an efficient photocatalytic degradation of tetracycline
    Dou, Xincheng
    Li, Qiaoqiao
    Shi, Haifeng
    CRYSTENGCOMM, 2021, 23 (26) : 4638 - 4647
  • [47] 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations
    Fei, Xingang
    Tan, Haiyan
    Cheng, Bei
    Zhu, Bicheng
    Zhang, Liuyang
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (06)
  • [48] 2D/2D Boron/g-C3N4 Nanosheet Heterojunction Boosts Photocatalytic Hydrogen Evolution Performance
    Chen, Keng
    Guo, Huazhang
    Zhang, Jiye
    Wang, Liang
    Wu, Minghong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 10657 - 10666
  • [49] Construction of 2D/0D/2D Face-to-Face Contactg-C3N4@Au@Bi4Ti3O12Heterojunction Photocatalysts for Degradation of Rhodamine B
    Gao, Huajing
    Zhao, Xinxin
    Zhang, Haimin
    Chen, Jiafu
    Wang, Shifa
    Yang, Hua
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (09) : 5248 - 5259
  • [50] Dispersing agglomerated Zn4In2S7 on g-C3N4 nanosheets to form a 2D/2D S-scheme heterojunction for highly selective photocatalytic cleavage of lignin models
    Lu, Yitong
    Fan, Yu
    Xu, Shuai
    Li, Yuliang
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (08) : 2294 - 2304