Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor

被引:35
|
作者
Krutyanskiy, V. [1 ,2 ]
Canteri, M. [1 ,2 ]
Meraner, M. [1 ,2 ]
Bate, J. [1 ]
Krcmarsky, V. [1 ,2 ]
Schupp, J. [1 ,2 ]
Sangouard, N. [3 ]
Lanyon, B. P. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Experimentalphys, Tech Str 25, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Tech Str 21a, A-6020 Innsbruck, Austria
[3] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
关键词
HERALDED ENTANGLEMENT; ATOMIC ENSEMBLES; SINGLE ATOMS; NETWORK;
D O I
10.1103/PhysRevLett.130.213601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum repeater node is presented based on trapped ions that act as single-photon emitters, quantum memories, and an elementary quantum processor. The node's ability to establish entanglement across two 25-km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks, and quantum processors.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Arbitrary quantum circuits on a fully integrated two-qubit computation register for a trapped-ion quantum processor
    Pulido-Mateo, N.
    Mendpara, H.
    Duwe, M.
    Dubielzig, T.
    Zarantonello, G.
    Krinner, L.
    Ospelkaus, C.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [42] Design for Telecom-Wavelength Quantum Emitters in Silicon Based on Alkali-Metal-Saturated Vacancy Complexes
    Udvarhelyi, Peter
    Narang, Prineha
    ACS NANO, 2025, 19 (05) : 5418 - 5428
  • [43] Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits
    Jin, Jeongwan
    Saglamyurek, Erhan
    Puigibert, Marcel. li Grimau
    Verma, Varun
    Marsili, Francesco
    Nam, Sae Woo
    Oblak, Daniel
    Tittel, Wolfgang
    PHYSICAL REVIEW LETTERS, 2015, 115 (14)
  • [44] Trapped-ion quantum logic gates based on oscillating magnetic fields
    Ospelkaus, C.
    Langer, C. E.
    Amini, J. M.
    Brown, K. R.
    Leibfried, D.
    Wineland, D. J.
    PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [45] Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells
    Lau, W. H.
    Sih, V.
    Stern, N. P.
    Myers, R. C.
    Buell, D. A.
    Gossard, A. C.
    Awschalom, D. D.
    APPLIED PHYSICS LETTERS, 2006, 89 (14)
  • [46] Telecom-wavelength single-photon sources from quantum dots in microcavities
    Fiore, A.
    Zinoni, C.
    Alloing, B.
    Monat, C.
    Li, L. H.
    Le Thomas, N.
    Houdre, R.
    Lunghi, L.
    Francardi, M.
    Gerardino, A.
    ICTON 2006: 8TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 2, PROCEEDINGS: ESPC, NAON, 2006, : 235 - +
  • [47] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [48] A quantum repeater node with trapped ions: a realistic case example
    Pfister, A. D.
    Salz, M.
    Hettrich, M.
    Poschinger, U. G.
    Schmidt-Kaler, F.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (04):
  • [49] A quantum repeater node with trapped ions: a realistic case example
    A. D. Pfister
    M. Salz
    M. Hettrich
    U. G. Poschinger
    F. Schmidt-Kaler
    Applied Physics B, 2016, 122
  • [50] Control of trapped-ion quantum states with optical pulses
    Rangan, C
    Bloch, AM
    Monroe, C
    Bucksbaum, PH
    PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 113004 - 1