Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor

被引:35
|
作者
Krutyanskiy, V. [1 ,2 ]
Canteri, M. [1 ,2 ]
Meraner, M. [1 ,2 ]
Bate, J. [1 ]
Krcmarsky, V. [1 ,2 ]
Schupp, J. [1 ,2 ]
Sangouard, N. [3 ]
Lanyon, B. P. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Experimentalphys, Tech Str 25, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Tech Str 21a, A-6020 Innsbruck, Austria
[3] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
关键词
HERALDED ENTANGLEMENT; ATOMIC ENSEMBLES; SINGLE ATOMS; NETWORK;
D O I
10.1103/PhysRevLett.130.213601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum repeater node is presented based on trapped ions that act as single-photon emitters, quantum memories, and an elementary quantum processor. The node's ability to establish entanglement across two 25-km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks, and quantum processors.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Probabilistic eigensolver with a trapped-ion quantum processor
    Zhang, Jing-Ning
    Arrazola, Inigo
    Casanova, Jorge
    Lamata, Lucas
    Kim, Kihwan
    Solano, Enrique
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [2] Multispecies Trapped-Ion Node for Quantum Networking
    Inlek, I. V.
    Crocker, C.
    Lichtman, M.
    Sosnova, K.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (25)
  • [3] Certified randomness using a trapped-ion quantum processor
    Liu, Minzhao
    Shaydulin, Ruslan
    Niroula, Pradeep
    Decross, Matthew
    Hung, Shih-Han
    Kon, Wen Yu
    Cervero-Martin, Enrique
    Chakraborty, Kaushik
    Amer, Omar
    Aaronson, Scott
    Acharya, Atithi
    Alexeev, Yuri
    Berg, K. Jordan
    Chakrabarti, Shouvanik
    Curchod, Florian J.
    Dreiling, Joan M.
    Erickson, Neal
    Foltz, Cameron
    Foss-Feig, Michael
    Hayes, David
    Humble, Travis S.
    Kumar, Niraj
    Larson, Jeffrey
    Lykov, Danylo
    Mills, Michael
    Moses, Steven A.
    Neyenhuis, Brian
    Eloul, Shaltiel
    Siegfried, Peter
    Walker, James
    Lim, Charles
    Pistoia, Marco
    NATURE, 2025, : 343 - 348
  • [4] A quantum memory with telecom-wavelength conversion
    A. G. Radnaev
    Y. O. Dudin
    R. Zhao
    H. H. Jen
    S. D. Jenkins
    A. Kuzmich
    T. A. B. Kennedy
    Nature Physics, 2010, 6 : 894 - 899
  • [5] A quantum memory with telecom-wavelength conversion
    Radnaev, A. G.
    Dudin, Y. O.
    Zhao, R.
    Jen, H. H.
    Jenkins, S. D.
    Kuzmich, A.
    Kennedy, T. A. B.
    NATURE PHYSICS, 2010, 6 (11) : 894 - 899
  • [6] Robust Quantum Memory in a Trapped-Ion Quantum Network Node
    Drmota, P.
    Main, D.
    Nadlinger, D. P.
    Nichol, B. C.
    Weber, M. A.
    Ainley, E. M.
    Agrawal, A.
    Srinivas, R.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2023, 130 (09)
  • [7] Holographic Simulation of Correlated Electrons on a Trapped-Ion Quantum Processor
    Niu, Daoheng
    Haghshenas, Reza
    Zhang, Yuxuan
    Foss-Feig, Michael
    Chan, Garnet Kin-Lic
    Potter, Andrew C.
    PRX QUANTUM, 2022, 3 (03):
  • [8] Implementing Arbitrary Ising Models with a Trapped-Ion Quantum Processor
    Lu, Yao
    Chen, Wentao
    Zhang, Shuaining
    Zhang, Kuan
    Zhang, Jialiang
    Zhang, Jing-Ning
    Kim, Kihwan
    PHYSICAL REVIEW LETTERS, 2025, 134 (05)
  • [9] Telecom-Wavelength Quantum Relay Using a Semiconductor Quantum Dot
    Huwer, J.
    Felle, M.
    Stevenson, R. M.
    Skiba-Szymanska, J.
    Ward, M. B.
    Farrer, I.
    Penty, R. V.
    Ritchie, D. A.
    Shields, A. J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [10] Indistinguishable photons from a trapped-ion quantum network node
    Meraner, M.
    Mazloom, A.
    Krutyanskiy, V
    Krcmarsky, V
    Schupp, J.
    Fioretto, D. A.
    Sekatski, P.
    Northup, T. E.
    Sangouard, N.
    Lanyon, B. P.
    PHYSICAL REVIEW A, 2020, 102 (05)