Pullback dynamics for a class of non-autonomous Lame thermoelastic system

被引:0
|
作者
Bezerra, Flank D. M. [1 ]
Narciso, Vando [2 ]
机构
[1] Univ Fed Paraiba, Dept Math, Univ City Campus 1, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Estadual Mato Grosso do Sul, Ctr Exact & Technol Sci, BR-79804970 Dourados, MS, Brazil
来源
关键词
Non-autonomous dynamical systems; Lame system; Pullback attractors; Thermoelasticity; Quasi-stability; ASYMPTOTIC STABILITY; EQUATIONS; ATTRACTORS; EXISTENCE; BEHAVIOR; RATES;
D O I
10.1007/s00033-023-02012-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a dissipative singularly non-autonomous semilinear problem in thermoelasticity for N-dimensional materials. Under suitable conditions on nonlinearity and functional parameters, we prove a result of existence of pullback attractor via decomposition of the displacement vector field motivated by Helmholtz decomposition from vector calculus.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS
    Sun, Wenlong
    Li, Yeping
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) : 1370 - 1392
  • [32] Pullback attractor of non-autonomous parabolic equations with time delays
    Li, Jin
    Huang, Jian-Hua
    Zhu, Jian-Min
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2009, 31 (02): : 126 - 130
  • [33] The non-autonomous Kato class
    Schnaubelt, R
    Voigt, J
    ARCHIV DER MATHEMATIK, 1999, 72 (06) : 454 - 460
  • [34] The non-autonomous Kato class
    Roland Schnaubelt
    Jürgen Voigt
    Archiv der Mathematik, 1999, 72 : 454 - 460
  • [35] Pullback attractors for non-autonomous porous elastic system with nonlinear damping and sources terms
    Freitas, Mirelson M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 658 - 681
  • [36] On pullback attractor for non-autonomous weakly dissipative wave equations
    Yan, Xingjie
    Zhong, Chengkui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01): : 97 - 108
  • [37] Pullback attractors for the non-autonomous coupled suspension bridge equations
    Kang, Jum-Ran
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (16) : 8747 - 8758
  • [38] Pullback attractors for asymptotically compact non-autonomous dynamical systems
    Caraballo, T
    Lukaszewicz, G
    Real, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) : 484 - 498
  • [39] Periodic Dynamics of a Class of Non-autonomous Contact Hamiltonian Systems
    Li, Zhanyong
    Tang, Yaozong
    Bier, A. Mina Sha
    Ye, Jianguo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 663 - 676
  • [40] Pullback and uniform exponential attractors for non-autonomous Oregonator systems
    Liu, Na
    Yu, Yang-Yang
    OPEN MATHEMATICS, 2024, 22 (01):