Detection and Classification of Histopathological Breast Images Using a Fusion of CNN Frameworks

被引:4
|
作者
Rafiq, Ahsan [1 ]
Chursin, Alexander [2 ]
Awad Alrefaei, Wejdan [3 ]
Rashed Alsenani, Tahani [4 ]
Aldehim, Ghadah [5 ]
Abdel Samee, Nagwan [6 ]
Menzli, Leila Jamel [5 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Automat, Chongqing 400065, Peoples R China
[2] RUDN Univ, Higher Sch Ind Policy & Entrepreneurship, 6 Miklukho Maklaya St, Moscow 117198, Russia
[3] Prince Sattam Bin Abdulaziz Univ, Appl Coll Al Kharj, Dept Programming & Comp Sci, Al Kharj 16245, Saudi Arabia
[4] Taibah Univ, Coll Sci Yanbu, Dept Biol, Yanbu 46522, Saudi Arabia
[5] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, PO Box 84428, Riyadh 11671, Saudi Arabia
[6] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, PO Box 84428, Riyadh 11671, Saudi Arabia
关键词
breast cancer; histopathological images; deep learning; machine learning; convolutional neural network; COMPUTER-AIDED DIAGNOSIS; DIGITAL MAMMOGRAMS; CANCER; NETWORK;
D O I
10.3390/diagnostics13101700
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Breast cancer is responsible for the deaths of thousands of women each year. The diagnosis of breast cancer (BC) frequently makes the use of several imaging techniques. On the other hand, incorrect identification might occasionally result in unnecessary therapy and diagnosis. Therefore, the accurate identification of breast cancer can save a significant number of patients from undergoing unnecessary surgery and biopsy procedures. As a result of recent developments in the field, the performance of deep learning systems used for medical image processing has showed significant benefits. Deep learning (DL) models have found widespread use for the aim of extracting important features from histopathologic BC images. This has helped to improve the classification performance and has assisted in the automation of the process. In recent times, both convolutional neural networks (CNNs) and hybrid models of deep learning-based approaches have demonstrated impressive performance. In this research, three different types of CNN models are proposed: a straightforward CNN model (1-CNN), a fusion CNN model (2-CNN), and a three CNN model (3-CNN). The findings of the experiment demonstrate that the techniques based on the 3-CNN algorithm performed the best in terms of accuracy (90.10%), recall (89.90%), precision (89.80%), and f1-Score (89.90%). In conclusion, the CNN-based approaches that have been developed are contrasted with more modern machine learning and deep learning models. The application of CNN-based methods has resulted in a significant increase in the accuracy of the BC classification.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Tumor Detection In Breast Histopathological Images Using Faster R-CNN
    Harrison, Pratibha
    Park, Kihan
    2021 INTERNATIONAL SYMPOSIUM ON MEDICAL ROBOTICS (ISMR), 2021,
  • [2] Classification of Breast Cancer Histopathological Images using Residual Learning-based CNN
    Dubey, Aditya
    Yadav, Pradeep
    Bhargava, Chandra Prakash
    Pathak, Trapti
    Kumari, Jyoti
    Shrivastava, Deshdeepak
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (12): : 3365 - 3389
  • [3] Classification of Histopathological Images for Early Detection of Breast Cancer Using Deep Learning
    Senan, Ebrahim Mohammed
    Alsaade, Fawaz Waselallah
    Al-mashhadani, Mohammed Ibrahim Ahmed
    Aldhyani, Theyazn H. H.
    Al-Adhaileh, Mosleh Hmoud
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (03): : 323 - 329
  • [4] Multi CNN based automatic detection of mitotic nuclei in breast histopathological images
    Shihabuddin, Abdul Rahim
    Beevi, K. Sabeena
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [5] Classification of hyperspectral images using fusion of CNN and MiniGCN with SVM
    Wu, Wenbing
    Sadad, Tariq
    Safran, Mejdl
    Alfarhood, Sultan
    Yuan, Xiaojian
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 3601 - 3617
  • [6] Detection of Breast Cancer From Whole Slide Histopathological Images Using Deep Multiple Instance CNN
    Das, Kausik
    Conjeti, Sailesh
    Chatterjee, Jyotirmoy
    Sheet, Debdoot
    IEEE ACCESS, 2020, 8 : 213502 - 213511
  • [7] BCCHI-HCNN: Breast Cancer Classification from Histopathological Images Using Hybrid Deep CNN Models
    Pandey, Saroj Kumar
    Rathore, Yogesh Kumar
    Ojha, Manoj Kumar
    Janghel, Rekh Ram
    Sinha, Anurag
    Kumar, Ankit
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [8] Breast Cancer Detection Using CNN on Mammogram Images
    Batra, Kushal
    Sekhar, Sachin
    Radha, R.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 708 - 716
  • [9] Computerized Classification of Intraductal Breast Lesions Using Histopathological Images
    Dundar, M. Murat
    Badve, Sunil
    Bilgin, Gokhan
    Raykar, Vikas
    Jain, Rohit
    Sertel, Olcay
    Gurcan, Metin N.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (07) : 1977 - 1984
  • [10] Classification of Breast Cancer Histopathological Images Using KAZE Features
    Sanchez-Morillo, Daniel
    Gonzalez, Jesus
    Garcia-Rojo, Marcial
    Ortega, Julio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2018), PT II, 2019, 10814 : 276 - 286