Automatic Hyperparameter Tuning in Sparse Matrix Factorization

被引:1
|
作者
Kawasumi, Ryota [1 ]
Takeda, Koujin [2 ]
机构
[1] Chuo Univ, Grad Sch Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 1128551, Japan
[2] Ibaraki Univ, Grad Sch Sci & Engn, Dept Mech Syst Engn, Hitachi, Ibaraki 3168511, Japan
关键词
FREEDOM; LASSO;
D O I
10.1162/neco_a_01581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of hyperparameter tuning in sparse matrix factorization under a Bayesian framework. In prior work, an analytical solution of sparse matrix factorization with Laplace prior was obtained by a variational Bayes method under several approximations. Based on this solution, we propose a novel numerical method of hyperparameter tuning by evaluating the zero point of the normalization factor in a sparse matrix prior. We also verify that our method shows excellent performance for ground-truth sparse matrix reconstruction by comparing it with the widely used algorithm of sparse principal component analysis.
引用
收藏
页码:1086 / 1099
页数:14
相关论文
共 50 条
  • [31] Generating Pseudotransactions for Improving Sparse Matrix Factorization
    Wibowo, Agung T.
    PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, : 439 - 442
  • [32] MONITORING STABILITY OF TRIANGULAR FACTORIZATION OF A SPARSE MATRIX
    ERISMAN, AM
    REID, JK
    NUMERISCHE MATHEMATIK, 1974, 22 (03) : 183 - 186
  • [33] Using underapproximations for sparse nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    PATTERN RECOGNITION, 2010, 43 (04) : 1676 - 1687
  • [34] TUNING PARAMETER SELECTION FOR NONNEGATIVE MATRIX FACTORIZATION
    Ulfarsson, M. O.
    Solo, V.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6590 - 6594
  • [35] Automatic hyperparameter tuning of topology optimization algorithms using surrogate optimization
    Ha, Dat
    Carstensen, Josephine
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (09)
  • [36] Automatic Hyperparameter Tuning of Machine Learning Models under Time Constraints
    Wang, Zhen
    Agung, Mulya
    Egawa, Ryusuke
    Suda, Reiji
    Takizawa, Hiroyuki
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4967 - 4973
  • [37] Restart strategies enabling automatic differentiation for hyperparameter tuning in inverse problems
    Davy, Leo
    Pustelnik, Nelly
    Abry, Patrice
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1811 - 1815
  • [38] Automatic hyperparameter tuning in on-line learning: Classic Momentum and ADAM
    Wawrzyrnski, Pawel
    Zawistowski, Pawel
    Lepak, Lukasz
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [39] Transformer-CNN Automatic Hyperparameter Tuning for Speech Emotion Recognition
    Gumelar, Agustinus Bimo
    Yuniarno, Eko Mulyanto
    Adi, Derry Pramono
    Setiawan, Rudi
    Sugiarto, Indar
    Purnomo, Mauridhi Hery
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
  • [40] A sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of an SPD matrix
    Salkuyeh, Davod Khojasteh
    Toutounian, Faezeh
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (06) : 1265 - 1273