Automatic Hyperparameter Tuning in Sparse Matrix Factorization

被引:1
|
作者
Kawasumi, Ryota [1 ]
Takeda, Koujin [2 ]
机构
[1] Chuo Univ, Grad Sch Sci & Engn, Dept Math, Bunkyo Ku, Tokyo 1128551, Japan
[2] Ibaraki Univ, Grad Sch Sci & Engn, Dept Mech Syst Engn, Hitachi, Ibaraki 3168511, Japan
关键词
FREEDOM; LASSO;
D O I
10.1162/neco_a_01581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of hyperparameter tuning in sparse matrix factorization under a Bayesian framework. In prior work, an analytical solution of sparse matrix factorization with Laplace prior was obtained by a variational Bayes method under several approximations. Based on this solution, we propose a novel numerical method of hyperparameter tuning by evaluating the zero point of the normalization factor in a sparse matrix prior. We also verify that our method shows excellent performance for ground-truth sparse matrix reconstruction by comparing it with the widely used algorithm of sparse principal component analysis.
引用
收藏
页码:1086 / 1099
页数:14
相关论文
共 50 条
  • [1] Automatic hyperparameter tuning for support vector machines
    Anguita, D
    Ridella, S
    Rivieccio, F
    Zunino, R
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 1345 - 1350
  • [2] On constrained sparse matrix factorization
    Zheng, Wei-Shi
    Li, Stan Z.
    Lai, J. H.
    Liao, Shengcai
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 652 - +
  • [3] Robust sparse graph regularized nonnegative matrix factorization for automatic depression diagnosis
    Zhang, Lu
    Zhong, Jitao
    Wang, Quanhong
    Zhu, Jinzhou
    Liu, Hele
    Peng, Hong
    Hu, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [4] Automatic tuning of sparse matrix-vector multiplication on multicore clusters
    Li ShiGang
    Hu ChangJun
    Zhang JunChao
    Zhang YunQuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (09) : 1 - 14
  • [5] Automatic tuning of sparse matrix-vector multiplication on multicore clusters
    LI ShiGang
    HU ChangJun
    ZHANG JunChao
    ZHANG YunQuan
    Science China(Information Sciences), 2015, 58 (09) : 17 - 30
  • [6] Efficient Transfer Learning Method for Automatic Hyperparameter Tuning
    Yogatama, Dani
    Mann, Gideon
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 1077 - 1085
  • [7] Robust latent nonnegative matrix factorization with automatic sparse reconstruction for unsupervised feature extraction
    Wan, Minghua
    Cai, Mingxiu
    Yang, Zhangjing
    Tan, Hai
    Yang, Guowei
    Tang, Mingwei
    INFORMATION SCIENCES, 2023, 648
  • [8] Impact of Matrix Factorization and Regularization Hyperparameter on a Recommender System for Movies
    Fathan, Gess
    Adji, Teguh Bharata
    Ferdiana, Ridi
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 113 - 116
  • [9] DISCRIMINANT SPARSE NONNEGATIVE MATRIX FACTORIZATION
    Zhi, Ruicong
    Ruan, Qiuqi
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 570 - 573
  • [10] Kernelized Sparse Bayesian Matrix Factorization
    Li, Caoyuan
    Xie, Hong-Bo
    Fan, Xuhui
    Xu, Richard Yi Da
    Van Huffel, Sabine
    Mengersen, Kerrie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 391 - 404