All-Optical Magnetothermoelastic Skyrmion Motion

被引:3
|
作者
Lepadatu, Serban [1 ]
机构
[1] Univ Cent Lancashire, Inst Math Phys & Astron, Preston PR1 2HE, England
来源
PHYSICAL REVIEW APPLIED | 2023年 / 19卷 / 04期
关键词
MAGNETIC-ANISOTROPY; TEMPERATURE; FILMS; DEPENDENCE; STRAIN; STATE;
D O I
10.1103/PhysRevApplied.19.044036
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is predicted that magnetic skyrmions can be controllably moved on surfaces using a focused laser beam. Here an absorbed power of the order 1 mW, focused to a spot size of the order 1 mu m, results in a local temperature increase of around 50 K, and a local perpendicular strain of the order 10(-3) due to the thermoelastic effect. For positive magnetoelastic coupling this generates a strong attractive force on skyrmions due to the magnetoelastic effect. The resultant motion is dependent on forces due to (i) gradients in the local strain-induced magnetic anisotropy, (ii) temperature gradients resulting in magnetic parameter gradients due to their temperature dependences, especially local effective anisotropy gradients, and (iii) Magnus effect acting on objects with nonzero topological number. Using dynamical magnetothermoelastic modeling, it is predicted skyrmions can be moved with significant velocities (up to 80 m/s shown), both for ferromagnetic and antiferromagnetic skyrmions, even in the presence of surface roughness. This mechanism of controllably moving single skyrmions in any direction, as well as addressing multiple skyrmions in a lattice, offers an approach to constructing and studying skyrmionic devices with all-optical control.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ALL-OPTICAL REGENERATOR
    不详
    BRITISH TELECOMMUNICATIONS ENGINEERING, 1987, 5 : 312 - 313
  • [22] All-optical storage
    Seiji Armstrong
    Nature Photonics, 2012, 6 (10) : 636 - 637
  • [23] All-Optical Network
    Braun, Steve
    Hardin, William
    FIBER AND INTEGRATED OPTICS, 2009, 28 (06) : 412 - 416
  • [24] ALL-OPTICAL REGENERATOR
    GILES, CR
    LI, T
    WOOD, TH
    BURRUS, CA
    MILLER, DAB
    ELECTRONICS LETTERS, 1988, 24 (14) : 848 - 850
  • [25] Examining the all in all-optical networking
    McCormick, Andrew
    Bruce, Elizabeth
    Lightwave, 2002, 19 (05):
  • [26] All-optical microfluidic biosensor
    Mathesz, A.
    Valkai, S.
    Ormos, P.
    Ujvarosy, A.
    Aekbote, B. L.
    Sipos, O.
    Nagy, K.
    Szabo, D.
    Kocsis, B.
    Der, A.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S90 - S90
  • [27] All-optical photoacoustic microscopy
    Chen, Sung-Liang
    Guo, L. Jay
    Wang, Xueding
    PHOTOACOUSTICS, 2015, 3 (04): : 143 - 150
  • [28] All-Optical Signal Processing
    Willner, Alan E.
    Khaleghi, Salman
    Chitgarha, Mohammad Reza
    Yilmaz, Omer Faruk
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (04) : 660 - 680
  • [29] Switching to all-optical networks
    Kostal, H.
    Lightwave, 2001, 18 (13): : 106 - 110
  • [30] All-Optical Polariton Transistor
    Ballarini, D.
    De Giorgi, M.
    Cancellieri, E.
    Houdre, R.
    Giacobino, E.
    Cingolani, R.
    Bramati, A.
    Gigli, G.
    Sanvitto, D.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,