Bayesian workflow for the investigation of hierarchical classification models from tau-PET and structural MRI data across the Alzheimer's disease spectrum

被引:0
|
作者
Belasso, Clyde J. [1 ,2 ]
Cai, Zhengchen [3 ]
Bezgin, Gleb [4 ]
Pascoal, Tharick [5 ,6 ,7 ,8 ,9 ]
Stevenson, Jenna [5 ,6 ,7 ,8 ,9 ]
Rahmouni, Nesrine [5 ,6 ,7 ,8 ,9 ]
Tissot, Cecile [5 ,6 ,7 ,8 ,9 ]
Lussier, Firoza [5 ,6 ,7 ,8 ,9 ]
Rosa-Neto, Pedro [5 ,6 ,7 ,8 ,9 ,10 ]
Soucy, Jean-Paul [3 ]
Rivaz, Hassan [1 ,2 ]
Benali, Habib [1 ,2 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
[2] Concordia Univ, PERFORM Ctr, Montreal, PQ, Canada
[3] McGill Univ, Neuro Montreal Neurol Inst Hosp, Montreal, PQ, Canada
[4] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ, Canada
[5] McGill Univ, Douglas Res Inst, Ctr Integre Univ Sante & Serv Sociaux CIUSSS Ouest, Translat Neuroimaging Lab,Res Ctr Studies Aging,Al, Montreal, PQ, Canada
[6] McGill Univ, Dept Neurol, Montreal, PQ, Canada
[7] McGill Univ, Dept Neurosurg, Montreal, PQ, Canada
[8] McGill Univ, Dept Psychiat, Montreal, PQ, Canada
[9] McGill Univ, Dept Pharmacol & Therapeut, Montreal, PQ, Canada
[10] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr BIC, Montreal, PQ, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Alzheimer's disease; Bayesian workflow; classification; hierarchical modeling; tau-positron emission tomography (PET); magnetic resonance imaging (MRI); NETWORK; DIAGNOSIS;
D O I
10.3389/fnagi.2023.1225816
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundAlzheimer's disease (AD) diagnosis in its early stages remains difficult with current diagnostic approaches. Though tau neurofibrillary tangles (NFTs) generally follow the stereotypical pattern described by the Braak staging scheme, the network degeneration hypothesis (NDH) has suggested that NFTs spread selectively along functional networks of the brain. To evaluate this, we implemented a Bayesian workflow to develop hierarchical multinomial logistic regression models with increasing levels of complexity of the brain from tau-PET and structural MRI data to investigate whether it is beneficial to incorporate network-level information into an ROI-based predictive model for the presence/absence of AD.MethodsThis study included data from the Translational Biomarkers in Aging and Dementia (TRIAD) longitudinal cohort from McGill University's Research Centre for Studies in Aging (MCSA). Baseline and 1 year follow-up structural MRI and [18F]MK-6240 tau-PET scans were acquired for 72 cognitive normal (CN), 23 mild cognitive impairment (MCI), and 18 Alzheimer's disease dementia subjects. We constructed the four following hierarchical Bayesian models in order of increasing complexity: (Model 1) a complete-pooling model with observations, (Model 2) a partial-pooling model with observations clustered within ROIs, (Model 3) a partial-pooling model with observations clustered within functional networks, and (Model 4) a partial-pooling model with observations clustered within ROIs that are also clustered within functional brain networks. We then investigated which of the models had better predictive performance given tau-PET or structural MRI data as an input, in the form of a relative annualized rate of change.ResultsThe Bayesian leave-one-out cross-validation (LOO-CV) estimate of the expected log pointwise predictive density (ELPD) results indicated that models 3 and 4 were substantially better than other models for both tau-PET and structural MRI inputs. For tau-PET data, model 3 was slightly better than 4 with an absolute difference in ELPD of 3.10 +/- 1.30. For structural MRI data, model 4 was considerably better than other models with an absolute difference in ELPD of 29.83 +/- 7.55 relative to model 3, the second-best model.ConclusionOur results suggest that representing the data generating process in terms of a hierarchical model that encompasses both ROI-level and network-level heterogeneity leads to better predictive ability for both tau-PET and structural MRI inputs over all other model iterations.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] Machine learning prediction of tau-PET in Alzheimer's disease using plasma, MRI, and clinical data
    Karlsson, Linda
    Vogel, Jacob
    Arvidsson, Ida
    Astrom, Kalle
    Strandberg, Olof
    Seidlitz, Jakob
    Bethlehem, Richard A. I.
    Stomrud, Erik
    Ossenkoppele, Rik
    Ashton, Nicholas J.
    Zetterberg, Henrik
    Blennow, Kaj
    Palmqvist, Sebastian
    Smith, Ruben
    Janelidze, Shorena
    La Joie, Renaud
    Rabinovici, Gil D.
    Binette, Alexa Pichet
    Mattsson-Carlgren, Niklas
    Hansson, Oskar
    ALZHEIMERS & DEMENTIA, 2025, 21 (02)
  • [2] Data-driven approaches for tau-PET imaging biomarkers in Alzheimer's disease
    Vogel, Jacob W.
    Mattsson, Niklas
    Iturria-Medina, Yasser
    Strandberg, Olof T.
    Scholl, Michael
    Dansereau, Christian
    Villeneuve, Sylvia
    van der Flier, Wiesje M.
    Scheltens, Philip
    Bellec, Pierre
    Evans, Alan C.
    Hansson, Oskar
    Ossenkoppele, Rik
    HUMAN BRAIN MAPPING, 2019, 40 (02) : 638 - 651
  • [3] Amyloid and tau-PET in early-onset AD: Baseline data from the Longitudinal Early-onset Alzheimer′s Disease Study (LEADS)
    Cho, Hanna
    Mundada, Nidhi S.
    Apostolova, Liana G.
    Carrillo, Maria C.
    Shankar, Ranjani
    Amuiri, Alinda N.
    Zeltzer, Ehud
    Windon, Charles C.
    Soleimani-Meigooni, David N.
    Tanner, Jeremy A.
    Heath, Courtney Lawhn
    Lesman-Segev, Orit H.
    Aisen, Paul
    Eloyan, Ani
    Lee, Hye Sun
    Hammers, Dustin B.
    Kirby, Kala
    Dage, Jeffrey L.
    Fagan, Anne
    Foroud, Tatiana
    Grinberg, Lea T.
    Jack, Clifford R.
    Kramer, Joel
    Kukull, Walter A.
    Murray, Melissa E.
    Nudelman, Kelly
    Toga, Arthur
    Vemuri, Prashanthi
    Atri, Alireza
    Day, Gregory S.
    Duara, Ranjan
    Graff-Radford, Neill R.
    Honig, Lawrence S.
    Jones, David T.
    Masdeu, Joseph
    Mendez, Mario
    Musiek, Erik
    Onyike, Chiadi U.
    Riddle, Meghan
    Rogalski, Emily J.
    Salloway, Stephen
    Sha, Sharon
    Turner, Raymond Scott
    Wingo, Thomas S.
    Wolk, David A.
    Koeppe, Robert
    Iaccarino, Leonardo
    Dickerson, Bradford C.
    La Joie, Renaud
    Rabinovici, Gil D.
    ALZHEIMERS & DEMENTIA, 2023, 19 : S98 - S114
  • [4] PET Imaging of Tau Pathology and Amyloid-β, and MRI for Alzheimer's Disease Feature Fusion and Multimodal Classification
    Shojaie, Mehdi
    Tabarestani, Solale
    Cabrerizo, Mercedes
    DeKosky, Steven T.
    Vaillancourt, David E.
    Loewenstein, David
    Duara, Ranjan
    Adjouadi, Malek
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 84 (04) : 1497 - 1514
  • [5] Hippocampal subfield imaging and fractional anisotropy show parallel changes in Alzheimer's disease tau progression using simultaneous tau-PET/MRI at 3T
    Carlson, Mackenzie L.
    Toueg, Tyler N.
    Khalighi, M. Mehdi
    Castillo, Jessa
    Shen, Bin
    Azevedo, Emily C.
    DiGiacomo, Phillip
    Mouchawar, Nicole
    Chau, Gustavo
    Zaharchuk, Greg
    James, Michelle L.
    Mormino, Elizabeth C.
    Zeineh, Michael M.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2021, 13 (01)
  • [6] Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data
    Samper-Gonzalez, Jorge
    Burgos, Ninon
    Bottani, Simona
    Fontanella, Sabrina
    Lu, Pascal
    Marcoux, Arnaud
    Routier, Alexandre
    Guillon, Jeremy
    Bacci, Michael
    Wen, Junhao
    Bertrand, Anne
    Bertin, Hugo
    Habert, Marie-Odile
    Durrleman, Stanley
    Evgeniou, Theodoros
    Colliot, Olivier
    NEUROIMAGE, 2018, 183 : 504 - 521
  • [7] Associations between different tau-PET patterns and longitudinal atrophy in the Alzheimer's disease continuum: biological and methodological perspectives from disease heterogeneity
    Mohanty, Rosaleena
    Ferreira, Daniel
    Nordberg, Agneta
    Westman, Eric
    ALZHEIMERS RESEARCH & THERAPY, 2023, 15 (01)
  • [8] Associations between different tau-PET patterns and longitudinal atrophy in the Alzheimer’s disease continuum: biological and methodological perspectives from disease heterogeneity
    Rosaleena Mohanty
    Daniel Ferreira
    Agneta Nordberg
    Eric Westman
    Alzheimer's Research & Therapy, 15
  • [9] Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer's disease spectrum
    Timmers, Tessa
    Ossenkoppele, Rik
    Wolters, Emma E.
    Verfaillie, Sander C. J.
    Visser, Denise
    Golla, Sandeep S., V
    Barkhof, Frederik
    Scheltens, Philip
    Boellaard, Ronald
    van der Flier, Wiesje M.
    van Berckel, Bart N. M.
    ALZHEIMERS RESEARCH & THERAPY, 2019, 11 (1)
  • [10] Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer’s disease spectrum
    Tessa Timmers
    Rik Ossenkoppele
    Emma E. Wolters
    Sander C. J. Verfaillie
    Denise Visser
    Sandeep S. V. Golla
    Frederik Barkhof
    Philip Scheltens
    Ronald Boellaard
    Wiesje M. van der Flier
    Bart N. M. van Berckel
    Alzheimer's Research & Therapy, 11