Yolk-Shell Gradient-Structured SiOx Anodes Derived from Periodic Mesoporous Organosilicas Enable High-Performance Lithium-Ion Batteries

被引:10
|
作者
Ouyang, Quan [1 ]
Li, Guangshe [1 ]
Zhang, Xin [1 ]
Zhao, Xu [1 ]
Fu, Shilong [1 ]
Li, Liping [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient structure; lithium-ion batteries; SiOx anodes; yolk-shell; HIGH-CAPACITY; SILICON; NANOPARTICLES; STABILITY;
D O I
10.1002/smll.202305793
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gradient-structured materials hold great promise in the areas of batteries and electrocatalysis. Here, yolk-shell gradient-structured SiOx-based anode (YSG-SiOx/C@C) derived from periodic mesoporous organosilica spheres (PMOs) through a selective etching method is reported. Capitalizing on the poor hydrothermal stability of inorganic silica in organic-inorganic hybrid silica spheres, the inorganic silica component in the hybrid spheres is selectively etched to obtain yolk-shell-structured PMOs. Subsequently, the yolk-shell PMOs are coated with carbon to fabricate YSG-SiOx/C@C. YSG-SiOx/C@C is comprised of a core with uniform distribution of SiOx and carbon at the atomic scale, a middle void layer, and outer layers of SiOx and amorphous carbon. This unique gradient structure and composition from inside to outside not only enhances the electrical conductivity of the SiOx anode and reduces the side reactions, but also reserves void space for the expansion of SiOx, thereby effectively mitigating the stress caused by volumetric effect. As a result, YSG-SiOx/C@C exhibits exceptional cycling stability and rate capability. Specifically, YSG-SiOx/C@C maintains a specific capacity of 627 mAh g(-1) after 400 cycles at 0.5 A g(-1), and remains stable even after 550 cycles at current density of 2 A g(-1), achieving a specific capacity of 519 mAh g(-1).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Yolk-shell Co-glycerate@Fe-Co Prussian blue analogue spheres for high-performance lithium-ion batteries
    Chen, Y. X.
    Yuan, Y. F.
    Mo, C. L.
    Du, P. F.
    Guo, S. Y.
    MATERIALS LETTERS, 2022, 320
  • [32] Hollow core-shell-structured Si-C composites as high-performance anodes for lithium-ion batteries
    Wang, Ting
    Wang, Fanghui
    Zhu, Hong
    MATERIALS LETTERS, 2015, 161 : 89 - 92
  • [33] Carbon-free Cu/SbxOy/Sb nanocomposites with yolk-shell and hollow structures as high-performance anodes for lithium-ion storage
    Quoc Hai Nguyen
    Viet Duc Phung
    Kidanu, Weldejewergis Gebrewahid
    Ahn, Yong Nam
    Tuan Loi Nguyen
    Kim, Il Tae
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 878 (878)
  • [34] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [35] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Jiwoong (jwk@ssu.ac.kr), 1600, Elsevier Ltd (1010):
  • [36] Functionalized MXene anodes for high-performance lithium-ion batteries
    Kim, Hyokyeong
    Choi, Jiwoo
    Bae, Inseong
    Son, Hayoung
    Choi, Junyoung
    Lee, Jinyong
    Kim, Jiwoong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [37] Research progress of nano yolk-shell structured silicon/carbon anode materials for lithium-ion batteries
    Sui L.
    Hu D.
    Shi J.
    Yuan X.
    Jin Z.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (08): : 4390 - 4415
  • [38] A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries
    Ma, Canliang
    Wang, Zairan
    Zhao, Yun
    Li, Yong
    Shi, Jing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [39] In-situ synthesis of yolk-shell Si/C anodes via ZnO transformation for high rate lithium-ion batteries
    Fu, Siyue
    Zhou, Jianhua
    Wu, Guojing
    Liu, Wenping
    Qin, Haiqing
    Liu, Chenyan
    Sato, Tomohiro
    Peng, Ying
    Miao, Lei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [40] Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries
    Yan, Yuantao
    Xu, Zhixin
    Liu, Congcong
    Dou, Huanglin
    Wei, Jingjiang
    Zhao, Xiaoli
    Ma, Jingjing
    Dong, Qiang
    Xu, Haisong
    He, Yu-shi
    Ma, Zi-Feng
    Yang, Xiaowei
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17375 - 17383