System Identification of OSWEC Response Using Physics-Informed Neural Network

被引:2
|
作者
Ayyad, Mahmoud [1 ]
Ahmed, Alaa [1 ]
Yang, Lisheng [2 ]
Hajj, Muhammad R. [1 ]
Datla, Raju [1 ]
Zuo, Lei [2 ]
机构
[1] Stevens Inst Technol, Davidson Lab, Hoboken, NJ 07030 USA
[2] Univ Michigan, Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
来源
关键词
Oscillating Surge Wave Energy Converter (OSWEC); Physics-Informed Neural Network (PINN); System Identification; Reduced-Order Model;
D O I
10.1109/OCEANSLimerick52467.2023.10244631
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Optimizing the geometry and increasing the efficiency through PTO control of oscillating surge wave energy converters require the development of effective reduced-order models that can predict their hydrodynamic response. We implement a multi-step approach to identify the coefficients of the equation governing this response. Data from quasi-static, free decay and torque-forced experiments are used to respectively identify and represent the stiffness, the radiation damping, and the added mass and nonlinear damping terms. Particularly, we implement a data-driven system discovery, referred to as Physics-Informed Neural Network, to identify the added mass and nonlinear damping coefficients in the governing equations. Validation is performed via comparing time series predicted by the reduced order model to the measured time series.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
    Jing'ang ZHU
    Yiheng XUE
    Zishun LIU
    Applied Mathematics and Mechanics(English Edition), 2024, 45 (10) : 1685 - 1704
  • [42] Natural Mode Prediction of a Cantilever Beam Using a Physics-Informed Neural Network
    Kim, Gun Ho
    Lee, Jin Woo
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2024, 48 (09) : 621 - 631
  • [43] Multi-layer thermal simulation using physics-informed neural network
    Peng, Bohan
    Panesar, Ajit
    ADDITIVE MANUFACTURING, 2024, 95
  • [44] Physics-informed Neural Implicit Flow neural network for parametric PDEs
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    NEURAL NETWORKS, 2025, 185
  • [45] A PRELIMINARY STUDY OF LEARNING A WAVE ENERGY CONVERTER SYSTEM USING PHYSICS-INFORMED NEURAL NETWORK METHOD
    Chen, Bo-Chen
    Yu, Yi-Hsiang
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 8, 2023,
  • [46] A Physics-Informed Neural Network for the Nonlinear Damage Identification in a Reinforced Concrete Bridge Pier Using Seismic Responses
    Yamaguchi, Takahiro
    Mizutani, Tsukasa
    STRUCTURAL CONTROL & HEALTH MONITORING, 2024, 2024
  • [47] Structural identification with physics-informed neural ordinary differential equations
    Lai, Zhilu
    Mylonas, Charilaos
    Nagarajaiah, Satish
    Chatzi, Eleni
    JOURNAL OF SOUND AND VIBRATION, 2021, 508
  • [48] Physics-Informed Neural Networks for Non-linear System Identification for Power System Dynamics
    Stiasny, Jochen
    Misyris, George S.
    Chatzivasileiadis, Spyros
    2021 IEEE MADRID POWERTECH, 2021,
  • [49] PHYSICS-INFORMED NEURAL NETWORK FOR INVERSE HEAT CONDUCTION PROBLEM
    Qian, Weijia
    Hui, Xin
    Wang, Bosen
    Zhang, Zongwei
    Lin, Yuzhen
    Yang, Siheng
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 65 - 76
  • [50] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)