System Identification of OSWEC Response Using Physics-Informed Neural Network

被引:2
|
作者
Ayyad, Mahmoud [1 ]
Ahmed, Alaa [1 ]
Yang, Lisheng [2 ]
Hajj, Muhammad R. [1 ]
Datla, Raju [1 ]
Zuo, Lei [2 ]
机构
[1] Stevens Inst Technol, Davidson Lab, Hoboken, NJ 07030 USA
[2] Univ Michigan, Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
来源
关键词
Oscillating Surge Wave Energy Converter (OSWEC); Physics-Informed Neural Network (PINN); System Identification; Reduced-Order Model;
D O I
10.1109/OCEANSLimerick52467.2023.10244631
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Optimizing the geometry and increasing the efficiency through PTO control of oscillating surge wave energy converters require the development of effective reduced-order models that can predict their hydrodynamic response. We implement a multi-step approach to identify the coefficients of the equation governing this response. Data from quasi-static, free decay and torque-forced experiments are used to respectively identify and represent the stiffness, the radiation damping, and the added mass and nonlinear damping terms. Particularly, we implement a data-driven system discovery, referred to as Physics-Informed Neural Network, to identify the added mass and nonlinear damping coefficients in the governing equations. Validation is performed via comparing time series predicted by the reduced order model to the measured time series.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Physics-informed Neural Network for system identification of rotors
    Liu, Xue
    Cheng, Wei
    Xing, Ji
    Chen, Xuefeng
    Zhao, Zhibin
    Zhang, Rongyong
    Huang, Qian
    Lu, Jinqi
    Zhou, Hongpeng
    Zheng, Wei Xing
    Pan, Wei
    IFAC PAPERSONLINE, 2024, 58 (15): : 307 - 312
  • [2] System identification of oscillating surge wave energy converter using physics-informed neural network
    Ayyad, Mahmoud
    Yang, Lisheng
    Ahmed, Alaa
    Shalaby, Ahmed
    Huang, Jianuo
    Mi, Jia
    Datla, Raju
    Zuo, Lei
    Hajj, Muhammad R.
    APPLIED ENERGY, 2025, 378
  • [3] Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester
    Bai, C. Y.
    Yeh, F. Y.
    Shu, Y. C.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII, 2024, 12946
  • [4] Motion estimation and system identification of a moored buoy via physics-informed neural network
    Li, He-Wen-Xuan
    Lu, Lin
    Cao, Qianying
    APPLIED OCEAN RESEARCH, 2023, 138
  • [5] Parameter identification for a damage phase field model using a physics-informed neural network
    Rojas, Carlos J. G.
    Boldrini, Jos L.
    Bittencourt, Marco L.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (03)
  • [6] Parameter identification for a damage phase field model using a physics-informed neural network
    Carlos J.G.Rojas
    Jos L.Boldrini
    Marco L.Bittencourt
    Theoretical & Applied Mechanics Letters, 2023, 13 (03) : 229 - 246
  • [7] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [8] Physics-informed graphical neural network for power system state estimation
    Ngo, Quang-Ha
    Nguyen, Bang L. H.
    Vu, Tuyen V.
    Zhang, Jianhua
    Ngo, Tuan
    APPLIED ENERGY, 2024, 358
  • [9] Hierarchical Physics-Informed Neural Network for Rotor System Health Assessment
    Liu, Xue
    Cheng, Wei
    Xing, Ji
    Chen, Xuefeng
    Zhao, Zhibin
    Gao, Lin
    Zhang, Rongyong
    Huang, Qian
    Zhou, Hongpeng
    Zheng, Wei Xing
    Pan, Wei
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025,
  • [10] Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks
    Khalid, Md Meraj
    Schenkendorf, Rene
    ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023, 2024, : 51 - 60