EVALUATING FALL RISK IN ELDERLY PERSONS DURING INSTRUMENTED GAIT ANALYSIS USING WEARABLE SENSORS TECHNOLOGY

被引:0
|
作者
Chatajan, M. [1 ]
Apsega, A. [1 ]
Petrauskas, L. [2 ]
Tamulaitiene, M. [1 ]
Daunoraviciene, K. [2 ]
Griskevicius, J. [2 ]
Vitkus, D. [1 ]
Sevcenko, V. [1 ]
Mastaviciute, A. [1 ]
Alekna, V. [1 ]
机构
[1] Vilnius Univ, Fac Med, Vilnius, Lithuania
[2] Vilnius Gediminas Tech Univ, Vilnius, Lithuania
关键词
D O I
暂无
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
P885
引用
收藏
页码:S443 / S443
页数:1
相关论文
共 50 条
  • [41] Classification of fall risk across the lifespan using gait derived features from a wearable device
    Sasso, Grainger
    Mou, Lingxiao
    Hernandez, Manuel E.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [42] An analysis of elderly drivers’, cyclists’ and pedestrians’ behaviors using wearable sensors
    Tada M.
    Okada M.
    Renge K.
    Trans. Jpn. Soc. Med. Biol. Eng., 3 (129-134): : 129 - 134
  • [43] OBJECTIVE ASSESSMENT OF FALL RISK IN HOSPITALIZED OLDER ADULTS USING WEARABLE TECHNOLOGY
    Razjouyan, J.
    Grewal, G.
    Rishel, C.
    Parthasarathy, S.
    Mohler, M. J.
    Najafi, B.
    GERONTOLOGIST, 2015, 55 : 471 - 471
  • [44] Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima, Mikihisa
    Cho, Sung-Gwi
    Ding, Ming
    Ricardez, Gustavo Alfonso Garcia
    Takamatsu, Jun
    Ogasawara, Tsukasa
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 3629 - 3632
  • [45] Evaluating gait and postural responses to subthalamic stimulation and levodopa: A prospective study using wearable technology
    Cani, Ilaria
    D'Ascanio, Ilaria
    Baldelli, Luca
    Lopane, Giovanna
    Ranciati, Saverio
    Mantovani, Paolo
    Conti, Alfredo
    Cortelli, Pietro
    Calandra-Buonaura, Giovanna
    Chiari, Lorenzo
    Palmerini, Luca
    Giannini, Giulia
    EUROPEAN JOURNAL OF NEUROLOGY, 2025, 32 (01)
  • [46] Current Standards and Advances in Diabetic Ulcer Prevention and Elderly Fall Prevention Using Wearable Technology
    Miller J.D.
    Najafi B.
    Armstrong D.G.
    Current Geriatrics Reports, 2015, 4 (3) : 249 - 256
  • [47] Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors
    Choi, Jungyeon
    Knarr, Brian A.
    Youn, Jong-Hoon
    Song, Kwang Yoon
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [48] Detection of compensatory balance responses using wearable electromyography sensors for fall-risk assessment
    Nouredanesh, Mina
    Kukreja, Sunil L.
    Tung, James
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1680 - 1683
  • [49] TOWARD A QUANTITATIVE EVALUATION OF THE FALL RISK USING THE FUSION OF INERTIAL SIGNALS AND ELECTROMYOGRAPHY WITH WEARABLE SENSORS
    Mazzetta, Ivan
    Zampogna, Alessandro
    Suppa, Antonio
    Pessione, Marco
    Irrera, Fernanda
    2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, : 2227 - 2230
  • [50] Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors
    Gorsic, Maja
    Dai, Boyi
    Novak, Domen
    SENSORS, 2020, 20 (17) : 1 - 14