NEW BOUNDS ON THE CARDINALITY OF HAUSDORFF SPACES AND REGULAR SPACES

被引:3
|
作者
Carlson, N. [1 ]
机构
[1] Calif Lutheran Univ, Dept Math, 60 W Olsen Rd,MC 3750, Thousand Oaks, CA 91360 USA
关键词
cardinality bound; cardinal invariant; TIGHTNESS; SUBSPACES;
D O I
10.1007/s10474-023-01331-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using weaker versions of the cardinal function psi(c)(X), we derive a series of new bounds for the cardinality of Hausdorff spaces and regular spaces that do not involve psi(c)(X) nor its variants at all. For example, we show if X is regular then |X| <= 2(c(X)pi chi(X)) and |X| <= 2(c(X)pi chi(X)ot(X)), where the cardinal function ot(X), introduced by Tkachenko, has the property ot(X) <= min{t(X), c(X)}. It follows from the latter that a regular space with cellularity at most c and countable p- character has cardinality at most 2(c). For a Hausdorff space X we show |X| <= 2(d(X)pi chi(X)), |X| <= d((X)pi chi(X)ot(X)), and |X| <= 2(pi w(X)dot(X)), where dot(X) <= min{ot(X), pi chi(X)}. None of these bounds involve psi(c)(X) or psi(X). By introducing the cardinal functions w psi(c)(X) and d psi(c)(X) with the property w psi(c)(X)d psi(c)(X) <=psi(c)(X) for a Hausdorff space X, we show |X| <= (pi chi(X)c(X)w psi c(X)) if X is regular and |X| <= pi chi(X)(c(X)d psi c(X)w psi c(X)) if X is Hausdorff. This improves results of. Sapirovski.i and Sun. It is also shown that if X is Hausdorff then |X| <= 2(d(X)w psi c(X)), which appears to be new even in the case where w psi(c)(X) is replaced with psi(c)(X). Compact examples show that psi(X) cannot be replaced with d psi(c)(X)w psi(c)(X) in the bound 2(psi(X)) for the cardinality of a compact Hausdorff space X. Likewise,psi(X) cannot be replaced with d psi(c)(X)w psi(c)(X) in the Arhangelskii-Sapirovskii bound 2(L(X)t(X)psi(X)) for the cardinality of a Hausdorff space X. Finally, we make several observations concerning homogeneous spaces in this connection.
引用
收藏
页码:302 / 322
页数:21
相关论文
共 50 条
  • [31] COMPACTIFICATIONS OF HAUSDORFF SPACES
    LOEB, PA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (03) : 627 - &
  • [32] STRONGLY HAUSDORFF SPACES
    PORTER, JR
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1974, 25 (3-4): : 245 - 248
  • [33] EXTENSIONS OF HAUSDORFF SPACES
    PORTER, JR
    WOODS, RG
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 103 (01) : 111 - 134
  • [34] ON FUNCTIONALLY HAUSDORFF SPACES
    Lazaar, Sami
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2013, 25 (01) : 88 - 97
  • [35] FINITE HAUSDORFF SPACES
    BOLIS, TS
    KIRK, RB
    CONWAY, JB
    CROFTS, G
    CYBENKO, G
    GUTHRIE, JA
    HODEL, RE
    HOFFMAN, MJ
    HUMKE, PD
    JAGERS, AA
    KLEIN, EM
    LOY, RJ
    MUKHERJE.A
    GARD, JR
    NAIMPALL.SA
    SHARMA, PL
    PAKULA, L
    RAO, MB
    WHEELERR.
    WILKER, JB
    WONG, D
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (07): : 785 - 786
  • [36] WEAK HAUSDORFF SPACES
    HOFFMANN, RE
    ARCHIV DER MATHEMATIK, 1979, 32 (05) : 487 - 504
  • [37] MAPPINGS OF HAUSDORFF SPACES
    IVANOV, AV
    DOKLADY AKADEMII NAUK SSSR, 1974, 219 (05): : 1057 - 1060
  • [38] CHARACTERIZATION OF HAUSDORFF SPACES
    LASHER, S
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 923 - &
  • [39] ABSOLUTES OF HAUSDORFF SPACES
    ILIADIS, S
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (01): : 22 - &
  • [40] ON POWER OF HAUSDORFF SPACES
    EFIMOV, B
    DOKLADY AKADEMII NAUK SSSR, 1965, 164 (05): : 967 - &