A continuous analog of the binary Darboux transformation for the Korteweg-de Vries equation

被引:1
|
作者
Rybkin, Alexei [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Math & Stat, POB 756660, Fairbanks, AK 99775 USA
基金
英国工程与自然科学研究理事会;
关键词
Darboux transformation; KdV equation; Riemann-Hilbert problem; KDV; SOLITON;
D O I
10.1111/sapm.12578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Korteweg-de Vries equation (KdV) context, we put forward a continuous version of the binary Darboux transformation (aka the double commutation method). Our approach is based on the Riemann-Hilbert problem and yields a new explicit formula for perturbation of the negative spectrum of a wide class of step-type potentials without changing the rest of the scattering data. This extends the previously known formulas for inserting/removing finitely many bound states to arbitrary sets of negative spectrum of arbitrary nature. In the KdV context, our method offers same benefits as the classical binary Darboux transformation does.
引用
收藏
页码:208 / 246
页数:39
相关论文
共 50 条
  • [41] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [43] Bifurcations in the Generalized Korteweg-de Vries Equation
    Kashchenko, S. A.
    Preobrazhenskaya, M. M.
    RUSSIAN MATHEMATICS, 2018, 62 (02) : 49 - 61
  • [44] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [45] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [46] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [47] The Korteweg-de Vries equation in a cylindrical pipe
    V. A. Rukavishnikov
    O. P. Tkachenko
    Computational Mathematics and Mathematical Physics, 2008, 48 : 139 - 146
  • [48] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [49] Basic motions of the Korteweg-de Vries equation
    Kovalyov, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) : 599 - 619
  • [50] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    TECHNICAL PHYSICS, 2024, : 2336 - 2338