Comparison of the Core-collapse Evolution of Two Nearly Equal-mass Progenitors

被引:6
|
作者
Bruenn, Stephen W. [1 ]
Sieverding, Andre [2 ]
Lentz, Eric J. [2 ,3 ]
Sukhbold, Tuguldur [4 ]
Hix, W. Raphael [2 ,3 ]
Huk, Leah N. [5 ]
Harris, J. Austin [5 ]
Messer, O. E. Bronson [2 ,3 ,5 ]
Mezzacappa, Anthony [3 ]
机构
[1] Florida Atlantic Univ, Dept Phys, 777 Glades Rd, Boca Raton, FL 33431 USA
[2] Oak Ridge Natl Lab, Phys Div, POB 2008, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[4] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Dept Astron, Columbus, OH 43210 USA
[5] Oak Ridge Natl Lab, Natl Ctr Computat Sci, POB 2008, Oak Ridge, TN 37831 USA
来源
ASTROPHYSICAL JOURNAL | 2023年 / 947卷 / 01期
基金
美国国家科学基金会;
关键词
NEUTRINO-DRIVEN SUPERNOVA; HYDRODYNAMICS CODE; SELF-CONSISTENT; ACCRETION SHOCK; BIRTH MASSES; EXPLOSION; SIMULATIONS; MODELS; NUCLEOSYNTHESIS; CONVECTION;
D O I
10.3847/1538-4357/acbb65
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compare the core-collapse evolution of a pair of 15.8 M-? stars with significantly different internal structures, a consequence of the bimodal variability exhibited by massive stars during their late evolutionary stages. The 15.78 and 15.79 M-? progenitors have core masses (masses interior to an entropy of 4 k (B) baryon(-1)) of 1.47 and 1.78 M-? and compactness parameters ?(1.75) of 0.302 and 0.604, respectively. The core-collapse simulations are carried out in 2D to nearly 3 s postbounce and show substantial differences in the times of shock revival and explosion energies. The 15.78 M-? model begins exploding promptly at 120 ms postbounce when a strong density decrement at the Si-Si/O shell interface, not present in the 15.79 M-? progenitor, encounters the stalled shock. The 15.79 M-? model takes 100 ms longer to explode but ultimately produces a more powerful explosion. Both the larger mass accretion rate and the more massive core of the 15.79 M-? model during the first 0.8 s postbounce time result in larger ?(e )/? over bar e M (?) model resulted in the ejection of twice as much Ni-56. Most of the ejecta in both models are moderately proton rich, though counterintuitively the highest electron fraction (Y-e = 0.61) ejecta in either model are in the less-energetic 15.78 M-? model, while the lowest electron fraction (Y-e = 0.45) ejecta in either model are in the 15.79 M-? model.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Evolution, explosion, and nucleosynthesis of core-collapse supernovae
    Limongi, M
    Chieffi, A
    ASTROPHYSICAL JOURNAL, 2003, 592 (01): : 404 - 433
  • [32] Dynamical evolution of rotating stellar systems - II. Post-collapse, equal-mass system
    Kim, E
    Einsel, C
    Lee, HM
    Spurzem, R
    Lee, MG
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 334 (02) : 310 - 322
  • [33] The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes
    Farrell, Eoin J.
    Groh, Jose H.
    Meynet, Georges
    Eldridge, J. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (01) : L53 - L58
  • [34] Searching hubble space telescope images for core-collapse supernova progenitors
    Van Dyk, SD
    Li, WD
    Filippenko, AV
    YOUNG NEUTRON STARS AND THEIR ENVIRONMENTS, 2004, (218): : 29 - 32
  • [35] Constraints on core-collapse supernova progenitors from correlations with Hα emission
    Anderson, J. P.
    James, P. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 390 (04) : 1527 - 1538
  • [36] A search for core-collapse supernova progenitors in Hubble Space Telescope images
    Van Dyk, SD
    Li, WD
    Filippenko, AV
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2003, 115 (803) : 1 - 20
  • [37] ARE MODELS FOR CORE-COLLAPSE SUPERNOVA PROGENITORS CONSISTENT WITH THE PROPERTIES OF SUPERNOVA REMNANTS?
    Patnaude, Daniel J.
    Lee, Shiu-Hang
    Slane, Patrick O.
    Badenes, Carles
    Heger, Alexander
    Ellison, Donald C.
    Nagataki, Shigehiro
    ASTROPHYSICAL JOURNAL, 2015, 803 (02):
  • [38] Seeking Core-Collapse Supernova Progenitors in Pre-Explosion Images
    Leonard, Douglas C.
    HOT AND COOL: BRIDGING GAPS IN MASSIVE-STAR EVOLUTION, 2010, 425 : 79 - 88
  • [39] Core-collapse supernova simulations in one and two dimensions: comparison of codes and approximations
    Just, O.
    Bollig, R.
    Janka, H. -Th.
    Obergaulinger, M.
    Glas, R.
    Nagataki, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (04) : 4786 - 4814
  • [40] Post-explosion Evolution of Core-collapse Supernovae
    Witt, M.
    Psaltis, A.
    Yasin, H.
    Horn, C.
    Reichert, M.
    Kuroda, T.
    Obergaulinger, M.
    Couch, S. M.
    Arcones, A.
    ASTROPHYSICAL JOURNAL, 2021, 921 (01):