An Intelligent Arabic Model for Recruitment Fraud Detection Using Machine Learning

被引:5
|
作者
Sofy, Mohamed A. [1 ]
Khafagy, Mohammed H. [2 ]
Badry, Rasha M. [1 ]
机构
[1] Fayoum Univ, Fac Comp & Informat, Informat Syst Dept, Al Fayyum 63511, Egypt
[2] Fayoum Univ, Fac Comp & Informat, Comp Sci Dept, Al Fayyum, Egypt
关键词
data mining; fraud detection; online recruitment; machine learning; EMSCAD dataset;
D O I
10.12720/jait.14.1.102-111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the last years, with the tremendous growth of digital transformation and the constant need for companies to hire employees, huge amounts of fraudulent jobs have been posted on the internet. A cleverly planned sort of scam aimed at job searchers for a variety of unprofessional purposes is a false job posting. It can lead to a loss of money and effort. An Arabic intelligent model has been built to avoid fraudulent jobs on the Internet using machine learning, data mining, and classification techniques. The proposed model is applied to the Arabic version of the EMSCAD dataset. It is available on the Internet in the English version and it has been retrieved from the use of a real-life system and consists of several features such as company profile, company logo, interview questions, and more features depending on job offer ads, Firstly, EMSCAD is translated into the Arabic language. Then, a set of different classifiers such as Support Vector Machine (SVM), Random Forest (RF), Naive Bayes (NB), and K-Nearest Neighbor (KNN) was used to detect the fraudulent jobs. Finally, the results were compared to determine the best classifier used for detecting fraudulent jobs. The proposed model achieved better results when using a Random Forest classifier with 97% accuracy.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 50 条
  • [21] Prediction of Insurance Fraud Detection using Machine Learning Algorithms
    Rukhsar, Laiqa
    Bangyal, Waqas Haider
    Nisar, Kashif
    Nisar, Sana
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2022, 41 (01) : 33 - 40
  • [22] Fraud Detection using Machine Learning in e-Commerce
    Saputra, Adi
    Suharjito
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (09) : 332 - 339
  • [23] Click fraud detection for online advertising using machine learning
    Aljabri, Malak
    Mohammad, Rami Mustafa A.
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (02) : 341 - 350
  • [24] CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING ALGORITHMS
    Tyagi, Rishabh
    Ranjan, Ravi
    Priya, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 334 - 341
  • [25] Fraud Detection and Prevention Using Machine Learning Algorithms: A Review
    Priya, G. Jaculine
    Saradha, S.
    2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2021, : 564 - 568
  • [26] Fraud Detection in Healthcare Insurance Claims Using Machine Learning
    Nabrawi, Eman
    Alanazi, Abdullah
    RISKS, 2023, 11 (09)
  • [27] Credit card fraud detection using machine learning algorithms
    de Souza, Daniel H. M.
    Bordin Jr, Claudio J.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2023, 15 (01): : 1 - 11
  • [28] Fraud detection in textile trade using machine learning techniques
    Dhanalakshmi, R.V.
    Guru Basava Aradhya, S.
    Meera, C.
    Sireesha, B.
    Asian Textile Journal, 2024, 33 (3-4): : 35 - 38
  • [29] Building a Scale for Internet Fraud Detection Using Machine Learning
    L. V. Zhukova
    I. M. Kovalchuk
    A. A. Kochnev
    V. R. Chugunov
    Programming and Computer Software, 2023, 49 : 906 - 912
  • [30] Explainable Machine Learning for Fraud Detection
    Psychoula, Ismini
    Gutmann, Andreas
    Mainali, Pradip
    Lee, S. H.
    Dunphy, Paul
    Petitcolas, Fabien A. P.
    COMPUTER, 2021, 54 (10) : 49 - 59