A regularity property-driven evolutionary algorithm for multiobjective optimization

被引:2
|
作者
Gao, Xiangzhou [1 ]
Zhang, Hu [2 ]
Song, Shenmin [1 ]
机构
[1] Harbin Inst Technol, Ctr Control Theory & Guidance Technol, Harbin 150001, Peoples R China
[2] Beijing Electromech Engn Inst, Sci & Technol Complex Syst Control & Intelligent A, Beijing 100074, Peoples R China
关键词
Multiobjective optimization problem; Regularity property; Manifold structure; Recombination operator; Diversity maintenance; SEARCH; DECOMPOSITION; SELECTION;
D O I
10.1016/j.swevo.2023.101258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When most existing multiobjective evolutionary algorithms tackle continuous multiobjective optimization problems, they pay more attention to the population distribution in the objective space and neglect the potential of high-quality solutions in the decision space. In fact, it has been demonstrated that a good approximation of both Pareto optimal set (PS) and Pareto front (PF) is capable of facilitating decision making, especially when preferences are not clearly defined by the decision-maker. However, since different problems may have different internal structures, achieving trade-offs between exploration and exploitation while accelerating convergence toward the PS and PF remains challenging. To address this issue, we propose an evolutionary algorithm that explicitly exploits the regularity properties of the multiobjective optimization problem in the decision space and the objective space. A feedback loop can be formed directly between two spaces, which aims to approximate the PS and the PF by approximating the PS manifold and the PF manifold, respectively. In addition, the uniform distribution of population is guaranteed by two mutually reinforcing diversity maintenance mechanisms. Our experimental results on a variety of benchmark problems and real -world problems demonstrate that the proposed method performs remarkable on problems with regularities but suffers from some limitations when solving some real-world problems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    Xue, Xingsi
    Liu, Hailin
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3306 - 3319
  • [32] An evolutionary algorithm with spatially distributed surrogates for multiobjective optimization
    Isaacs, Amitay
    Ray, Tapabrata
    Smith, Warren
    PROGRESS IN ARTIFICIAL LIFE, PROCEEDINGS, 2007, 4828 : 257 - 268
  • [33] Ship Hull Structural Multiobjective Optimization by Evolutionary Algorithm
    Sekulski, Zbigniew
    JOURNAL OF SHIP RESEARCH, 2014, 58 (02): : 45 - 69
  • [34] A Rough-to-Fine Evolutionary Multiobjective Optimization Algorithm
    Gu, Fangqing
    Liu, Hai-Lin
    Cheung, Yiu-Ming
    Zheng, Minyi
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13472 - 13485
  • [35] Evolutionary Dynamic Multiobjective Optimization: Benchmarks and Algorithm Comparisons
    Jiang, Shouyong
    Yang, Shengxiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) : 198 - 211
  • [36] A Hybrid Evolutionary Immune Algorithm for Multiobjective Optimization Problems
    Lin, Qiuzhen
    Chen, Jianyong
    Zhan, Zhi-Hui
    Chen, Wei-Neng
    Coello Coello, Carlos A.
    Yin, Yilong
    Lin, Chih-Min
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) : 711 - 729
  • [37] Survey on Multiobjective Optimization Evolutionary Algorithm Based on Decomposition
    Gao W.-F.
    Liu L.-L.
    Wang Z.-K.
    Gong M.-G.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10): : 4743 - 4771
  • [38] Multiobjective evolutionary algorithm for the optimization of noisy combustion processes
    Büche, D
    Stoll, P
    Dornberger, R
    Koumoutsakos, P
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2002, 32 (04): : 460 - 473
  • [39] Optimization of a MEMS Accelerometer Using A Multiobjective Evolutionary Algorithm
    Pak, Murat
    Fernandez, Francisco V.
    Dundar, Gunhan
    2017 14TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD), 2017,
  • [40] Antenna Optimization With a Computationally Efficient Multiobjective Evolutionary Algorithm
    John, Matthias
    Ammann, Max J.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (01) : 260 - 263