To reduce the flow dead zone in spouted beds (SBs), a novel multi-jet-axial swirl blade spouted bed (MJ-ASB SB) is proposed. Experimental verification and simulation analyses of the MJ-ASB SB, a conventional SB (CSB), and an integral multi-jet spout-fluidized bed (IMJSFB) were carried out. The simulation results showed that the combined structure resulted in more powerful turbulence, better radial mixing of particles in the spouting and annulus regions, and improved the flow-field uniformity. The intensification factor of the MJ-ASB SB was more than 20%, which was better than that of the IMJSFB, and the en-hancement factors of the gas and particle velocities were four and five times those of the IMJSFB, respectively. Optimal structural parameters were obtained by analyzing the dif-ferent structural parameters of the novel internal devices, and it was found that particle fluidization in the MJ-ASB SB was best when the height ratio xi was 3, the width ratio was 1.3 and the rotation was clockwise.(c) 2023 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.