On the frame set of the second-order B-spline

被引:1
|
作者
Atindehou, A. Ganiou D. [1 ]
Frederick, Christina [2 ]
Kouagou, Yebeni B.
Okoudjou, Kasso A. [3 ]
机构
[1] Univ Abomey Calavi, Dept Math, 01 BP 4521, Cotonou, Benin
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[3] Tufts Univ, Dept Math, Medford, MA 02155 USA
基金
美国国家科学基金会;
关键词
Gabor frames; Frame set; B-splines; GABOR FRAMES; DENSITY THEOREMS; ZAK TRANSFORMS; INTERPOLATION;
D O I
10.1016/j.acha.2022.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The frame set of a function g is an element of L2(R) is the set of all parameters (a, b) is an element of R2+ for which the collection of time-frequency shifts of g along aZ x bZ form a Gabor frame for L2(R). Finding the frame set of a given function remains a challenging open problem in time-frequency analysis. In this paper, we establish new regions of the frame set of the second-order B-spline. Our method uses the compact support of this function to partition a subset of the putative frame set and finds an explicit dual window function in each subregion. Numerical evidence indicates the existence of further regions belonging to the frame set. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [41] ALTERNATE SPLINE - A GENERALIZED B-SPLINE
    BIEN, AP
    CHENG, FH
    JOURNAL OF APPROXIMATION THEORY, 1987, 51 (02) : 138 - 159
  • [42] Texture analysis and retrieval using fractal signature and B-Spline wavelet transform with second order derivative
    Wang, Q
    Feng, DD
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 545 - 548
  • [43] Cubic Trigonometric B-spline Method for Solving a Linear System of Second Order Boundary Value Problems
    Heilat, Ahmed Salem
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2384 - 2396
  • [44] Generating bicubic B-spline surfaces by a sixth order PDE
    Wu, Yan
    Zhu, Chun-Gang
    AIMS MATHEMATICS, 2021, 6 (02): : 1677 - 1694
  • [45] On the second-order contingent set and differential inclusions
    Aghezzaf, B
    Sajid, S
    JOURNAL OF CONVEX ANALYSIS, 2000, 7 (01) : 183 - 195
  • [46] Second-Order Optimality Conditions in Set Optimization
    J. Jahn
    A. A. Khan
    P. Zeilinger
    Journal of Optimization Theory and Applications, 2005, 125 : 331 - 347
  • [47] Second-Order Elliptic Equations on a Stratified Set
    O. M. Penkin
    Journal of Mathematical Sciences, 2004, 119 (6) : 836 - 867
  • [48] As-developable-as-possible B-spline surface interpolation to B-spline curves
    Bo, Pengbo
    Zheng, Yujian
    Chu, Dianhui
    Zhang, Caiming
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 79
  • [49] Semi-structured B-spline for blending two B-spline surfaces
    Lin, Hongwei
    Xiong, Yunyang
    Liao, Hongwei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (07) : 706 - 718
  • [50] MINIMUM MODELS OF SECOND-ORDER SET THEORIES
    Williams, Kameryn J.
    JOURNAL OF SYMBOLIC LOGIC, 2019, 84 (02) : 589 - 620