Open Long-Tailed Recognition in a Dynamic World

被引:10
|
作者
Liu, Ziwei [1 ]
Miao, Zhongqi [2 ]
Zhan, Xiaohang [3 ]
Wang, Jiayun [2 ]
Gong, Boqing [4 ]
Yu, Stella X. [2 ]
机构
[1] Nanyang Technol Univ, Singapore 639798, Singapore
[2] Univ Calif Berkeley, Int Comp Sci Inst, Berkeley, CA 94720 USA
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[4] Google Inc, Mountain View, CA 94043 USA
关键词
Tail; Visualization; Head; Training; Task analysis; Measurement; Magnetic heads; Long-tailed recognition; few-shot learning; active learning;
D O I
10.1109/TPAMI.2022.3200091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real world data often exhibits a long-tailed and open-ended (i.e., with unseen classes) distribution. A practical recognition system must balance between majority (head) and minority (tail) classes, generalize across the distribution, and acknowledge novelty upon the instances of unseen classes (open classes). We define Open Long-Tailed Recognition++ (OLTR++) as learning from such naturally distributed data and optimizing for the classification accuracy over a balanced test set which includes both known and open classes. OLTR++ handles imbalanced classification, few-shot learning, open-set recognition, and active learning in one integrated algorithm, whereas existing classification approaches often focus only on one or two aspects and deliver poorly over the entire spectrum. The key challenges are: 1) how to share visual knowledge between head and tail classes, 2) how to reduce confusion between tail and open classes, and 3) how to actively explore open classes with learned knowledge. Our algorithm, OLTR++, maps images to a feature space such that visual concepts can relate to each other through a memory association mechanism and a learned metric (dynamic meta-embedding) that both respects the closed world classification of seen classes and acknowledges the novelty of open classes. Additionally, we propose an active learning scheme based on visual memory, which learns to recognize open classes in a data-efficient manner for future expansions. On three large-scale open long-tailed datasets we curated from ImageNet (object-centric), Places (scene-centric), and MS1M (face-centric) data, as well as three standard benchmarks (CIFAR-10-LT, CIFAR-100-LT, and iNaturalist-18), our approach, as a unified framework, consistently demonstrates competitive performance. Notably, our approach also shows strong potential for the active exploration of open classes and the fairness analysis of minority groups.
引用
收藏
页码:1836 / 1851
页数:16
相关论文
共 50 条
  • [41] Balanced Contrastive Learning for Long-Tailed Visual Recognition
    Zhu, Jianggang
    Wang, Zheng
    Chen, Jingjing
    Chen, Yi-Ping Phoebe
    Jiang, Yu-Gang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6898 - 6907
  • [42] Inverse Image Frequency for Long-Tailed Image Recognition
    Alexandridis, Konstantinos Panagiotis
    Luo, Shan
    Nguyen, Anh
    Deng, Jiankang
    Zafeiriou, Stefanos
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5721 - 5736
  • [43] Exploring the auxiliary learning for long-tailed visual recognition
    Zhang, Junjie
    Liu, Lingqiao
    Wang, Peng
    Zhang, Jian
    NEUROCOMPUTING, 2021, 449 : 303 - 314
  • [44] The long-tailed rat
    Gold, AG
    ASIAN FOLKLORE STUDIES, 2004, 63 (02): : 243 - 265
  • [45] LONG-TAILED PAIR
    SCROGGIE, MG
    WIRELESS WORLD, 1968, 74 (1396): : 369 - &
  • [46] Key Point Sensitive Loss for Long-Tailed Visual Recognition
    Li, Mengke
    Cheung, Yiu-Ming
    Hu, Zhikai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4812 - 4825
  • [47] Mixing Global and Local Features for Long-Tailed Expression Recognition
    Zhou, Jiaxiong
    Li, Jian
    Yan, Yubo
    Wu, Lei
    Xu, Hao
    INFORMATION, 2023, 14 (02)
  • [48] Feature Re-Balancing for Long-Tailed Visual Recognition
    Zhao, Yan
    Chen, Weicong
    Huang, Kai
    Zhu, Jihong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] FCC: Feature Clusters Compression for Long-Tailed Visual Recognition
    Li, Jian
    Meng, Ziyao
    Shi, Daqian
    Song, Rui
    Diao, Xiaolei
    Wang, Jingwen
    Xu, Hao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24080 - 24089
  • [50] Balanced clustering contrastive learning for long-tailed visual recognition
    Kim, Byeong-il
    Ko, Byoung Chul
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)