DENSE DEPTH ESTIMATION FOR SURGICAL ENDOSCOPE ROBOT WITH MULTI-BASELINE DEPTH MAP FUSION

被引:1
|
作者
Tan, Zhidong [1 ]
Song, Rihui [1 ]
Huang, Kai [1 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Surgical endoscope; multi-baseline stereo; depth map processing; image fusion;
D O I
10.1109/ICIP49359.2023.10222752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dense depth estimation in endoscopic images can provide surgeons with important information for performing accurate minimally invasive surgeries. However, it is difficult to estimate the absolute depth of the scene based on monocular endoscope. Depth values in endoscopic images change drastically during the operation, which make it hard to estimate them with a fixed baseline. In this paper, we propose a depth estimation scheme with multiple baselines. The monocular endoscope is moved horizontally by a robotic endoscope holder to generate stereo images. A pixel-level depth map fusion algorithm is designed to combine depth values estimated with different baselines. Experimental results show that the proposed method improves the accuracy of depth estimation and the visual quality of depth maps.
引用
收藏
页码:2230 / 2234
页数:5
相关论文
共 50 条
  • [31] Dense monocular depth estimation for stereoscopic vision based on pyramid transformer and multi-scale feature fusion
    Zhongyi Xia
    Tianzhao Wu
    Zhuoyan Wang
    Man Zhou
    Boqi Wu
    C. Y. Chan
    Ling Bing Kong
    Scientific Reports, 14
  • [32] Dense monocular depth estimation for stereoscopic vision based on pyramid transformer and multi-scale feature fusion
    Xia, Zhongyi
    Wu, Tianzhao
    Wang, Zhuoyan
    Zhou, Man
    Wu, Boqi
    Chan, C. Y.
    Kong, Ling Bing
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [33] Image-based Force Estimation of Deformable Tissue using Depth Map for Single-Port Surgical Robot
    Kim, Wooyoung
    Seung, Sungmin
    Choi, Hongseok
    Park, Sukho
    Ko, Seong Young
    Park, Jong-Oh
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2012, : 1716 - 1719
  • [34] EfficientNet-B0 Based Monocular Dense-Depth Map Estimation
    Tadepalli, Yasasvy
    Kollati, Meenakshi
    Kuraparthi, Swaraja
    Kora, Padmavathi
    TRAITEMENT DU SIGNAL, 2021, 38 (05) : 1485 - 1493
  • [35] Improving Depth Estimation Using Map-Based Depth Priors
    Patil, Vaishakh
    Liniger, Alexander
    Dai, Dengxin
    Van Gool, Luc
    IEEE Robotics and Automation Letters, 2022, 7 (02): : 3640 - 3647
  • [36] Improving Depth Estimation Using Map-Based Depth Priors
    Patil, Vaishakh
    Liniger, Alexander
    Dai, Dengxin
    Gool, Luc Van
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 3640 - 3647
  • [37] DENSE DEPTH MAP GENERATION USING SPARSE DEPTH DATA FROM NORMAL FLOW
    Hui, Tak-Wai
    Ngan, King Ngi
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3837 - 3841
  • [38] Dense depth map acquisition by hierarchic structured light
    Niu, PY
    Xiang, H
    Wong, AKC
    2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, 2002, : 165 - 171
  • [39] Infrared Camera Calibration for Dense Depth Map Construction
    Gschwandtner, Michael
    Kwitt, Roland
    Uhl, Andreas
    Pree, Wolfgang
    2011 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2011, : 857 - 862
  • [40] Structure guided fusion for depth map inpainting
    Qi, Fei
    Han, Junyu
    Wang, Pengjin
    Shi, Guangming
    Li, Fu
    PATTERN RECOGNITION LETTERS, 2013, 34 (01) : 70 - 76