Applications of Symmetric Identities for Apostol-Bernoulli and Apostol-Euler Functions

被引:1
|
作者
He, Yuan [1 ]
机构
[1] Neijiang Normal Univ, Sch Math & Informat Sci, Neijiang 641100, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
Apostol-Bernoulli functions; Bernoulli functions; Apostol-Euler functions; quasi-periodic Euler functions; combinatorial identity; THETA-FUNCTIONS; HARDY SUMS; POLYNOMIALS; EISENSTEIN; FORMULAS; SERIES;
D O I
10.3390/sym15071384
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we perform a further investigation on the Apostol-Bernoulli and Apostol-Euler functions introduced by Luo. By using the Fourier expansions of the Apostol-Bernoulli and Apostol-Euler polynomials, we establish some symmetric identities for the Apostol-Bernoulli and Apostol-Euler functions. As applications, some known results, for example, Raabe's multiplication formula and Hermite's identity, are deduced as special cases.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Several identities for the generalized Apostol-Bernoulli polynomials
    Zhang, Zhizheng
    Yang, Hanqing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 2993 - 2999
  • [42] Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials
    He, Yuan
    Araci, Serkan
    Srivastava, H. M.
    Acikgoz, Mehmet
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 31 - 41
  • [43] On the Apostol-Bernoulli Polynomials
    Luo, Qiu-Ming
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (04): : 509 - 515
  • [44] Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol-Bernoulli Polynomials and Numbers, and Degenerate Apostol-Euler Polynomials and Numbers
    Jin, Siqintuya
    Dagli, Muhammet Cihat
    Qi, Feng
    AXIOMS, 2022, 11 (09)
  • [45] Identities and Derivative Formulas for the Combinatorial and Apostol-Euler Type Numbers by Their Generating Functions
    Kucukoglu, Irem
    Simsek, Yilmaz
    FILOMAT, 2018, 32 (20) : 6879 - 6891
  • [46] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Ozarslan, Mehmet Ali
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [47] A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials
    El-Desouky, B. S.
    Gomaa, R. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 695 - 702
  • [48] Sums of products of Apostol-Bernoulli numbers
    Kim, Min-Soo
    Hu, Su
    RAMANUJAN JOURNAL, 2012, 28 (01): : 113 - 123
  • [49] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Mehmet Ali Özarslan
    Advances in Difference Equations, 2013
  • [50] A New Formula of Products of the Apostol–Bernoulli and Apostol–Euler Polynomials
    Yuan He
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1307 - 1318