Integrated Transcriptomic and Metabolomic Analyses Reveal the Molecular and Metabolic Basis of Flavonoids in Areca catechu L.

被引:14
|
作者
Lai, Jun [1 ,2 ]
Li, Chun [1 ,2 ]
Zhang, Yueran [1 ,2 ]
Wu, Zeyong [1 ,2 ]
Li, Weiguan [1 ,2 ]
Zhang, Zhonghui [1 ,2 ]
Ye, Weizhen [1 ,2 ]
Guo, Hao [1 ,2 ]
Wang, Chao [1 ,2 ]
Long, Tuan [1 ,2 ]
Wang, Shouchuang [1 ,2 ]
Yang, Jun [1 ,2 ]
机构
[1] Hainan Univ, Sanya Nanfan Res Inst, Hainan Yazhou Bay Seed Lab, Sanya 572025, Peoples R China
[2] Hainan Univ, Coll Trop Crops, Haikou 572208, Peoples R China
基金
海南省自然科学基金;
关键词
Areca catechu L; flavonoid; metabolomic; transcriptomic; glycosyltransferase; transcription factor; ALKALOIDS; IDENTIFICATION; ARABIDOPSIS; NETWORK; SEED;
D O I
10.1021/acs.jafc.2c08864
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Areca catechu L., of the Arecaceae family, is widely distributed in tropical Asia. In A. catechu, the extracts and compounds, including flavonoids, have various pharmacological activities. Although there are many studies of flavonoids, the molecular mechanism of their biosynthesis and regulation remains unclear in A. catechu. In this study, 331 metabolites were identified from the root, stem, and leaf of A. catechu using untargeted metabolomics, including 107 flavonoids, 71 lipids, 44 amino acids and derivatives, and 33 alkaloids. The transcriptome analysis identified 6119 differentially expressed genes, and some were enriched in the flavonoid pathway. To analyze the biosynthetic mechanism of the metabolic differences in A. catechu tissues, 36 genes were identified through combined transcriptomic and metabolomic analysis, in which glycosyltransferase genes Acat_15g017010 and Acat_16g013670 were annotated as being involved in the glycosylation of kaempferol and chrysin by their expression and in vitro activities. Flavonoid biosynthesis could be regulated by the transcription factors, AcMYB5 and AcMYB194. This study laid a foundation for further research on the flavonoid biosynthetic pathway of A. catechu.
引用
收藏
页码:4851 / 4862
页数:12
相关论文
共 50 条
  • [21] Transcriptomic and Metabolomic Analyses Reveal Molecular Regulatory Networks for Pigmentation Deposition in Sheep
    Zhang, Mancheng
    Xu, Xiaoli
    Chen, Yuan
    Wei, Chengqi
    Zhan, Siyuan
    Cao, Jiaxue
    Guo, Jiazhong
    Dai, Dinghui
    Wang, Linjie
    Zhong, Tao
    Zhang, Hongping
    Li, Li
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (15)
  • [22] Identification and molecular characterization of a novel member of the genus Totivirus from Areca catechu L.
    Tan, Hang
    Zhao, Ruibai
    Wang, Hongxing
    Huang, Xi
    ARCHIVES OF VIROLOGY, 2023, 168 (10)
  • [23] Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L.
    Wu, Yue
    Guo, Qi
    Long, Cui
    El-Kassaby, Yousry A.
    Sun, Yuhan
    Li, Yun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [24] Identification and molecular characterization of a novel member of the genus Totivirus from Areca catechu L.
    Hang Tan
    Ruibai Zhao
    Hongxing Wang
    Xi Huang
    Archives of Virology, 2023, 168
  • [25] Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra
    Yu, Niu
    Chen, Zhaoli
    Yang, Jinchang
    Li, Rongsheng
    Zou, Wentao
    TREE PHYSIOLOGY, 2021, 41 (06) : 1087 - 1102
  • [26] Combined transcriptomic and metabolomic analyses reveal the pharmacognostic mechanism of the metabolism of flavonoids in different parts of Polygonum capitatum
    Yang, Jie
    Zhang, Yu
    Guo, Bu-Fa
    Peng, Qi-Lun
    Chen, Hong-Yu
    Ye, Mao
    Yi, Wei
    Ding, Wei-Jun
    PLANT GENOME, 2025, 18 (01):
  • [27] Molecular basis of Pogostemon cablin responding to continuous cropping obstacles revealed by integrated transcriptomic, miRNA and metabolomic analyses
    Yan, Wuping
    Liu, Xiaofeng
    Cao, Shijia
    Yu, Jing
    Zhang, Junfeng
    Yao, Guanglong
    Yang, Huageng
    Yang, Dongmei
    Wu, Yougen
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 200
  • [28] Physiological, transcriptomic and metabolomic analyses reveal that exogenous arginine alleviate the response of Sorghum bicolor L. to cadmium stress
    Ye, Lvlan
    Yu, Junxing
    Zhang, Xingyu
    Yu, Feng
    Zeng, Tuo
    Gu, Lei
    Zhu, Bin
    Wang, Hongcheng
    Du, Xuye
    Industrial Crops and Products, 2025, 229
  • [29] Metabolomic and Transcriptomic Analyses Reveal the Molecular Mechanism Underlying the Massive Accumulation of Secondary Metabolites in Fenugreek (Trigonella foenum-graecum L.) Seeds
    Zhao, Qiuyu
    Wu, Guoxing
    Yang, Pu
    Shi, Yuanchong
    Fu, Zuoyi
    Mo, Haifeng
    Shi, Chunlan
    Yu, Shuhui
    GENES, 2024, 15 (03)
  • [30] Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L
    Xiong, Jun-Lan
    Ma, Ni
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)