HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

被引:25
|
作者
Gao, Mingyu [1 ,2 ]
Bao, Zhengyi [1 ]
Zhu, Chunxiang [1 ,3 ]
Jiang, Jiahao [1 ]
He, Zhiwei [1 ,2 ]
Dong, Zhekang [1 ]
Song, Yining [4 ]
机构
[1] Hangzhou Dianzi Univ, Sch Elect & Informat, Hangzhou 310018, Peoples R China
[2] Zhejiang Prov Key Lab Equipment Elect, Hangzhou 310018, Peoples R China
[3] China Jiliang Univ, Engn Training Ctr, Hangzhou 310018, Peoples R China
[4] Zhejiang Leapmotor Technol Co Ltd, Hangzhou 310053, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-health; Long-short-term memory (LSTM); Hybrid network; ONLINE STATE; CHARGE; MODEL; PHYSICS; SOH;
D O I
10.1016/j.egyr.2023.01.109
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long-short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:2577 / 2590
页数:14
相关论文
共 50 条
  • [21] Critical summary and perspectives on state-of-health of lithium-ion battery
    Yang, Bo
    Qian, Yucun
    Li, Qiang
    Chen, Qian
    Wu, Jiyang
    Luo, Enbo
    Xie, Rui
    Zheng, Ruyi
    Yan, Yunfeng
    Su, Shi
    Wang, Jingbo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [22] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106
  • [23] Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-Ion Battery
    Liu, Wei
    Gao, Songchen
    Yan, Wendi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (04)
  • [24] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [25] A Unified Deep Learning Optimization Paradigm for Lithium-Ion Battery State-of-Health Estimation
    Cai, Lei
    Cui, Ningmin
    Jin, Haiyan
    Meng, Jinhao
    Yang, Shengxiang
    Peng, Jichang
    Zhao, Xinchao
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 589 - 600
  • [26] Lithium-Ion Battery State-of-Health Estimation Using the Incremental Capacity Analysis Technique
    Stroe, Daniel-Ioan
    Schaltz, Erik
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (01) : 678 - 685
  • [27] State-of-Health Estimation of Lithium-Ion Battery Based on Constant Voltage Charging Duration
    Chen, Jinyu
    Chen, Dawei
    Han, Xiaolan
    Li, Zhicheng
    Zhang, Weijun
    Lai, Chun Sing
    BATTERIES-BASEL, 2023, 9 (12):
  • [28] A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health
    ShangYu Zhao
    Kai Ou
    XingXing Gu
    ZhiMin Dan
    JiuJun Zhang
    YaXiong Wang
    Rare Metals, 2024, 43 (11) : 5637 - 5651
  • [29] A novel transformer-embedded lithium-ion battery model for joint estimation of state-of-charge and state-of-health
    Zhao, Shang-Yu
    Ou, Kai
    Gu, Xing-Xing
    Dan, Zhi-Min
    Zhang, Jiu-Jun
    Wang, Ya-Xiong
    RARE METALS, 2024, 43 (11) : 5637 - 5651
  • [30] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)