Efficient degradation of levofloxacin using a g-C3N4@glucose-derived carbon catalyst with adjustable N content via peroxymonosulfate activation

被引:15
|
作者
Zhang, Xinxi [1 ,2 ]
Tian, Yunhao [1 ,2 ]
Zhou, Liang [1 ,2 ]
Wang, Lingzhi [3 ,4 ]
Zhang, Jinlong [3 ,4 ]
Liu, Yongdi [1 ,2 ]
Lei, Juying [1 ,2 ,5 ,6 ]
机构
[1] East China Univ Sci & Technol, Natl Engn Res Ctr Ind Wastewater Detoxicat & Resou, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Asses, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, Shanghai Engn Res Ctr Multimedia Environm Catalysi, 130 Meilong Rd, Shanghai 200237, Peoples R China
[4] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[5] East China Univ Sci & Technol, Sch Chem & Mol Engn, Feringa Nobel Prize Scientist Joint Res Ctr, Key Lab Adv Mat, 130 Meilong Rd, Shanghai 200237, Peoples R China
[6] East China Univ Sci & Technol, Sch Chem & Mol Engn, Feringa Nobel Prize Scientist Joint Res Ctr, Joint Int Res Lab Precis Chem & Mol Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
N-doped carbon-based catalyst; Graphite carbon nitride; Peroxymonosulfate; Non-radical pathway; Singlet oxygen; NITROGEN-DOPED GRAPHENE; ENHANCED ACTIVATION; POROUS CARBON; NANOTUBES; INSIGHTS; MELAMINE; REMOVAL; OXIDE;
D O I
10.1016/j.chemosphere.2022.137684
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal-free carbon-based catalysts hold great promise for the degradation of organic pollutants by perox-ymonosulfate (PMS) activation because they avoid the negative effects of metal catalysts such as harmful metal ions leaching. However, these carbon-based catalysts are limited by their high cost and complex synthesis, and the mechanisms for the activation of PMS are unclear. Herein, the N-rich carbon catalysts (GCN-x) derived from glucose and g-C3N4 were facilely synthesized by hydrothermal treatment and carbonization to explore the mechanism of PMS activation. The nitrogen content of catalysts could be adjusted by simply altering the ratio of glucose and g-C3N4. GCN-2.4 with a ratio of glucose and g-C3N4 of 2.4 displayed the highest efficiency for the degradation of pollutants represented by Levofloxacin. The electron paramagnetic resonance and quenching experiments demonstrated that the non-radical pathway was dominant in Levofloxacin degradation and singlet oxygen (O-1(2)) was the main active specie. Further, we found O-1(2) was generated from superoxide radical (O-center dot(2)-) which has rarely been studied. Levofloxacin degradation rate was shown to be positively correlated with both the amount of graphitic N and pyridinic N. Graphitic N and pyridinic N were identified as the catalytic sites. The GCN-2.4/PMS system could also remove multifarious contaminants effectively. Overall, this research advances understanding of the role of N species in PMS activation and has potential practical application in wastewater treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] ZIF-derived CoFe2O4/Fe2O3 combined with g-C3N4 as high-efficient photocatalysts for enhanced degradation of levofloxacin in the presence of peroxymonosulfate
    Guo, Pengyao
    Hu, Xiaomin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [32] Enhanced activation of peroxymonosulfate by nanomagnetic CoFe2O4-CeO2/g-C3N4 composites as a heterogeneous catalyst for metronidazole degradation
    Ahmed, Adeel
    Usman, Muhammad
    Rafiq, Muhammad
    Adnan, Muhammad
    Ullah, Raza
    Cong, Hailin
    Yu, Bing
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 67
  • [33] Performance and Mechanism of Brucite/g-C3N4 Catalyst-Activated Peroxymonosulfate for Rapid Degradation of Methylene Blue
    Ma, Mengxia
    Zhang, Baqun
    Tang, Xuekun
    Zhou, Hepeng
    LANGMUIR, 2025,
  • [34] Energy efficient photocatalytic activation of peroxymonosulfate by g-C3N4 under 400 nm LED irradiation for degradation of Acid Orange 7
    Kokate, Santosh
    Gupta, Smita
    Kopuri, Vijayakumar Gupta
    Prakash, Halan
    CHEMOSPHERE, 2022, 287
  • [35] Photoactuation Healing of α-FeOOH@g-C3N4 Catalyst for Efficient and Stable Activation of Persulfate
    Zhang, Gong
    Wu, Zhang
    Liu, Huijuan
    Ji, Qinghua
    Qu, Jiuhui
    Li, Jinghong
    SMALL, 2017, 13 (41)
  • [36] Development of Fe-doped g-C3N4/graphite mediated peroxymonosulfate activation for degradation of aromatic pollutants via nonradical pathway
    Li, Hongchao
    Shan, Chao
    Pan, Bingcai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 675 : 62 - 72
  • [37] Enhanced simazine degradation via peroxymonosulfate activation using hemin-doped rice husk biochar as a novel Fe/N–C catalyst
    Aryee, Aaron Albert
    Masud, Md Abdullah Al
    Shin, Won Sik
    Chemosphere, 2024, 366
  • [38] Efficient degradation of tetracycline via N-doped carbon derived from discarded PET plastics by boosting peroxymonosulfate activation and singlet oxygen generation
    Wang, Kefu
    Guo, Changyan
    Li, Jiang
    Wang, Yubin
    Xing, Yage
    Li, Peizhi
    Wang, Ziyi
    Wang, Jide
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [39] Preparation and performance of g-C3N4/g-C3N5 homojunction photocatalyst activated peroxymonosulfate for ceftriaxone sodium degradation
    Zhang, Jingle
    Wang, Huihu
    Ou, Yangliu
    Tu, Hao
    Zhang, Ziguan
    Wei, Chenhuinan
    Xiang, Xing
    Bao, Ming
    DIAMOND AND RELATED MATERIALS, 2024, 148
  • [40] Enhanced peroxymonosulfate activation for Orange I degradation by g-C3N4/AgFeO2 composite in water
    Zhao, Ying
    Wang, Shuo
    Wei, Tong
    Ren, Yueming
    Luan, Tianzhu
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):