Observation of the Electromagnetic Field Effect via Charge-Dependent Directed Flow in Heavy-Ion Collisions at the Relativistic Heavy Ion Collider

被引:23
|
作者
Abdulhamid, M., I [4 ]
Aboona, B. E. [56 ]
Adam, J. [16 ]
Adams, J. R. [41 ]
Agakishiev, G. [31 ]
Aggarwal, I [42 ]
Aggarwal, M. M. [42 ]
Ahammed, Z. [62 ]
Aitbaev, A. [31 ]
Alekseev, I [2 ,38 ]
Alpatov, E. [38 ]
Aparin, A. [31 ]
Aslam, S. [27 ]
Atchison, J. [1 ]
Averichev, G. S. [31 ]
Bairathi, V. [54 ]
Cap, J. G. Ball [23 ]
Barish, K. [12 ]
Bhagat, P. [30 ]
Bhasin, A. [30 ]
Bhatta, S. [53 ]
Bhosale, S. R. [18 ]
Bordyuzhin, I. G. [2 ]
Brandenburg, J. D. [41 ]
Brandin, A. V. [38 ]
Cai, X. Z. [51 ]
Caines, H. [65 ]
Sanchez, M. Calderon de la Barca [10 ]
Cebra, D. [10 ]
Ceska, J. [16 ]
Chakaberia, I. [34 ]
Chan, B. K. [11 ]
Chang, Z. [28 ]
Chatterjee, A. [17 ]
Chen, D. [12 ]
Chen, J. [50 ]
Chen, J. H. [20 ]
Chen, Z. [50 ]
Cheng, J. [58 ]
Cheng, Y. [11 ]
Choudhury, S. [20 ]
Christie, W. [6 ]
Chu, X. [6 ]
Crawford, H. J. [9 ]
Dale-Gau, G. [14 ]
Das, A. [16 ]
Dash, A. P. [11 ]
Daugherity, M. [1 ]
Dedovich, T. G. [31 ]
Deppner, I. M. [22 ]
机构
[1] Abilene Christian Univ, Abilene, TX 79699 USA
[2] NRC Kurchatov Inst, Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] Amer Univ Cairo, New Cairo 11835, Egypt
[5] Ball State Univ, Muncie, IN 47306 USA
[6] Brookhaven Natl Lab, Upton, NY 11973 USA
[7] Univ Calabria, I-87036 Arcavacata Di Rende, Italy
[8] INFN Cosenza, I-87036 Arcavacata Di Rende, Italy
[9] Univ Calif Berkeley, Berkeley, CA 94720 USA
[10] Univ Calif Davis, Davis, CA 95616 USA
[11] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[12] Univ Calif Riverside, Riverside, CA 92521 USA
[13] Cent China Normal Univ, Wuhan 430079, Hubei, Peoples R China
[14] Univ Illinois, Chicago, IL 60607 USA
[15] Creighton Univ, Omaha, NE 68178 USA
[16] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic
[17] Natl Inst Technol Durgapur, Durgapur 713209, India
[18] Eotvos Lorand Univ, H-1117 Budapest, Hungary
[19] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany
[20] Fudan Univ, Shanghai 200433, Peoples R China
[21] Guangxi Normal Univ, Guilin, Peoples R China
[22] Heidelberg Univ, D-69120 Heidelberg, Germany
[23] Univ Houston, Houston, TX 77204 USA
[24] Huzhou Univ, Huzhou, Zhejiang 313000, Peoples R China
[25] Indian Inst Sci Educ & Res IISER, Berhampur 760010, India
[26] Indian Inst Sci Educ & Res IISER Tirupati, Tirupati 517507, India
[27] Indian Inst Technol, Patna 801106, Bihar, India
[28] Indiana Univ, Bloomington, IN 47408 USA
[29] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China
[30] UnivJammu, Jammu 180001, India
[31] Joint Inst Nucl Res, Dubna 141980, Russia
[32] Kent State Univ, Kent, OH 44242 USA
[33] Univ Kentucky, Lexington, KY 40506 USA
[34] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[35] Lehigh Univ, Bethlehem, PA 18015 USA
[36] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[37] Michigan State Univ, E Lansing, MI 48824 USA
[38] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
[39] HBNI, Natl Inst Sci Educ & Res, Jatni 752050, India
[40] Natl Cheng Kung Univ, Tainan 70101, Taiwan
[41] Ohio State Univ, Columbus, OH 43210 USA
[42] Panjab Univ, Chandigarh 160014, India
[43] NRC Kurchatov Inst, Inst High Energy Phys, Protvino 142281, Russia
[44] Purdue Univ, West Lafayette, PA 47907 USA
[45] Rice Univ, Houston, TX 77251 USA
[46] Rutgers State Univ, Piscataway, NJ 08854 USA
[47] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[48] South China Normal Univ, Guangzhou 510631, Guangdong, Peoples R China
[49] Sejong Univ, Seoul 05006, South Korea
[50] Shandong Univ, Qingdao 266237, Shandong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 日本学术振兴会; 新加坡国家研究基金会;
关键词
MAGNETIC-FIELD;
D O I
10.1103/PhysRevX.14.011028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Noncentral collisions can produce strong magnetic fields on the order of 1018 G, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and antiquarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final -state particles, specifically in the rapidity-odd directed flow, denoted as v1oy thorn . Here, we present the charge-dependent measurements of dv1=dy near midrapidities for pi ⠂, K ⠂, and pop over bar thorn in Au thorn Au and isobar (96 44Ru thorn 9644Ru and 9640Zr thorn 96 40Zr) collisions at ffiffiffiffiffiffiffi p 1/4 200 GeV, and in Au thorn Au collisions at sNN 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the v1 signal on collision system, particle species, and collision centrality can be qualitatively and semiquantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the u and d quarks transported from initial -state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multiparticle and charge-dependent azimuthal correlations in heavy-ion collisions at the Relativistic Heavy-Ion Collider
    Schenke, Bjorn
    Shen, Chun
    Tribedy, Prithwish
    PHYSICAL REVIEW C, 2019, 99 (04)
  • [2] Charge-dependent azimuthal correlations in relativistic heavy-ion collisions and electromagnetic effects
    Liu, K. F.
    PHYSICAL REVIEW C, 2012, 85 (01):
  • [3] Charge-dependent flow as evidence of strong electromagnetic fields in heavy-ion collisions
    Dubla, Andrea
    Guersoy, Umut
    Snellings, Raimond
    MODERN PHYSICS LETTERS A, 2020, 35 (39)
  • [4] Modeling of heavy-ion collisions at the relativistic heavy-ion collider
    Bass, Steffen A.
    Nonaka, Chiho
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2007, 16 (03): : 729 - 741
  • [5] Charge-dependent flow induced by electromagnetic fields in heavy ion collisions
    Gursoy, U.
    Kharzeev, D. E.
    Marcus, E.
    Rajagopal, K.
    Shen, C.
    NUCLEAR PHYSICS A, 2021, 1005
  • [6] Electromagnetic field evolution in relativistic heavy-ion collisions
    Voronyuk, V.
    Toneev, V. D.
    Cassing, W.
    Bratkovskaya, E. L.
    Konchakovski, V. P.
    Voloshin, S. A.
    PHYSICAL REVIEW C, 2011, 83 (05):
  • [7] Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider
    Subrata Pal
    Pramana, 2015, 84 : 717 - 730
  • [8] Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider
    Pal, Subrata
    PRAMANA-JOURNAL OF PHYSICS, 2015, 84 (05): : 717 - 730
  • [9] Charge-dependent directed flows in heavy-ion collisions by Boltzmann-Maxwell equations
    Zhang, Jun-Jie
    Sheng, Xin-Li
    Pu, Shi
    Chen, Jian-Nan
    Peng, Guo-Liang
    Wang, Jian-Guo
    Wang, Qun
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [10] Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
    Hongo, Masaru
    Hirono, Yuji
    Hirano, Tetsufumi
    PHYSICS LETTERS B, 2017, 775 : 266 - 270