Euler-Lagrange-Herglotz equations on Lie algebroids

被引:0
|
作者
Simoes, Alexandre Anahory [1 ]
Colombo, Leonardo [2 ]
de Leon, Manuel [3 ,4 ]
Salgado, Modesto [5 ,6 ]
Souto, Silvia [5 ,6 ]
机构
[1] IE Univ, Sch Sci & Technol, Madrid, Spain
[2] CSIC UPM, Ctr Automat & Robot, Arganda Del Rey, Spain
[3] Inst Ciencias Matemat CSIC, Madrid, Spain
[4] Real Acad Ciencias, Madrid, Spain
[5] Univ Santiago Compostela, Dept Matemat, Fac Matemat, Santiago De Compostela, Spain
[6] Ctr Invest & Tecnol Matemat Galicia CITMAga, Galicia, Spain
关键词
Contact systems; Lie algebroids; Jacobi structures; Dissipative mechanical systems; MECHANICS; SYSTEMS; SUBMANIFOLDS; DYNAMICS; FIELD;
D O I
10.1007/s13324-023-00859-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce Euler-Lagrange-Herglotz equations on Lie algebroids. The methodology is to extend the Jacobi structure from TQ x R and T*Q x R to A x R and A* x R, respectively, where A is a Lie algebroid and A* carries the associated Poisson structure. We see that A* x R possesses a natural Jacobi structure from where we are able to model dissipative mechanical systems on Lie algebroids, generalizing previous models on TQ x R and introducing new ones as for instance for reduced systems on Lie algebras, semidirect products (action Lie algebroids) and Atiyah bundles.
引用
收藏
页数:19
相关论文
共 50 条