Euler-Lagrange-Herglotz equations on Lie algebroids

被引:0
|
作者
Simoes, Alexandre Anahory [1 ]
Colombo, Leonardo [2 ]
de Leon, Manuel [3 ,4 ]
Salgado, Modesto [5 ,6 ]
Souto, Silvia [5 ,6 ]
机构
[1] IE Univ, Sch Sci & Technol, Madrid, Spain
[2] CSIC UPM, Ctr Automat & Robot, Arganda Del Rey, Spain
[3] Inst Ciencias Matemat CSIC, Madrid, Spain
[4] Real Acad Ciencias, Madrid, Spain
[5] Univ Santiago Compostela, Dept Matemat, Fac Matemat, Santiago De Compostela, Spain
[6] Ctr Invest & Tecnol Matemat Galicia CITMAga, Galicia, Spain
关键词
Contact systems; Lie algebroids; Jacobi structures; Dissipative mechanical systems; MECHANICS; SYSTEMS; SUBMANIFOLDS; DYNAMICS; FIELD;
D O I
10.1007/s13324-023-00859-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce Euler-Lagrange-Herglotz equations on Lie algebroids. The methodology is to extend the Jacobi structure from TQ x R and T*Q x R to A x R and A* x R, respectively, where A is a Lie algebroid and A* carries the associated Poisson structure. We see that A* x R possesses a natural Jacobi structure from where we are able to model dissipative mechanical systems on Lie algebroids, generalizing previous models on TQ x R and introducing new ones as for instance for reduced systems on Lie algebras, semidirect products (action Lie algebroids) and Atiyah bundles.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Euler–Lagrange–Herglotz equations on Lie algebroids
    Alexandre Anahory Simoes
    Leonardo Colombo
    Manuel de León
    Modesto Salgado
    Silvia Souto
    Analysis and Mathematical Physics, 2024, 14
  • [2] Dynamical equations and Lagrange-Ricci flow evolution on prolongation Lie algebroids
    Bubuianu, Laurentiu
    Vacaru, Sergiu I.
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (02) : 145 - 154
  • [3] Gysin sequence and Euler class of spherical Lie algebroids
    Kubarski, J
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 59 (3-4): : 245 - 269
  • [4] On the generalized Euler-Lagrange equations
    Chen, JW
    Lai, HC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 681 - 697
  • [5] Fractional Euler–Lagrange equations revisited
    Mohamed A. E. Herzallah
    Dumitru Baleanu
    Nonlinear Dynamics, 2012, 69 : 977 - 982
  • [6] Symmetries of second order differential equations on Lie algebroids
    Popescu, Liviu
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 117 : 84 - 98
  • [7] Dynamical equations and Lagrange-Ricci flow evolution on prolongation Lie algebroids (vol 97, pg 145, 2019)
    Bubuianu, Laurentiu
    Vacaru, Sergiu I.
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (06) : 692 - 692
  • [8] EULER-LAGRANGE EQUATIONS ON CANTOR SETS
    Baleanu, Dumitru
    Yang, Xiao-Jun
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [9] Lagrange coordinates for the Einstein-Euler equations
    Oliynyk, Todd A.
    PHYSICAL REVIEW D, 2012, 85 (04):
  • [10] On the global version of Euler-Lagrange equations
    Saraví, REG
    Solomin, JE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7301 - 7305